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A gas of interacting fermions is in the unitary regime if the average 

separation between particles is large compared to their size (range of 

interaction), but small compared to their scattering length. 

n - particle density n |a|3 >> 1 n r0
3 << 1 

r0 -  effective range 

a - scattering length 

NONPERTURBATIVE 

 REGIME 

System is dilute but 

strongly interacting! 

What is a unitary gas? 
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FGE - Energy of noninteracting Fermi gas 

- Exp. estimate 



Cold atomic gases and high Tc superconductors 

From Fischer et al., Rev. Mod. Phys. 79, 353 (2007) & P. Magierski, G. Wlazłowski, A. Bulgac, Phys. Rev. Lett. 107, 145304 (2011) 
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Expected phases of a two species dilute Fermi system 

                         BCS-BEC crossover 

BCS Superfluid 

     

Molecular BEC and 

Atomic+Molecular 

Superfluids 

weak interactions 

Strong interaction 

UNITARY REGIME 
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Unitary limit in 2 and 4 dimensions: 
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Intuitive arguments: 
 
-  For d=4  

4D: noninteracting bosons 

2D: noninteracting Fermi gas 

The only nontrivial case of unitary regime is in 3D 

Nussinov,Nussinov, Phys.Rev. A74, 053622(2006) 

- For d=2 the singularity of the wave function disappears = interaction  
    also disappears. 
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Effective Hamiltonian of an atom-atom system 

 
Regal and Jin, PRL 90, 230404 (2003) 
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Channel coupling 

Interatomic distance 
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Feshbach resonance 



M.W. Zwierlein et al.,  

Nature, 435, 1047 (2005) 

6system of fermionic   atomsLi

Feshbach resonance:  

B=834G 

BEC side: 

a>0 

BCS side: 

a<0 

UNITARY REGIME 

In 1999 DeMarco and Jin created  
  a degenerate atomic Fermi gas. 
 
In 2005 Zwierlein/Ketterle group observed   
  quantum vortices which survived when passing  
  from BEC to unitarity –  
  evidence for superfluidity! 

Short (selective) history: 



Path Integral Monte Carlo for fermions on 3D lattice 

- Spin up fermion: 

        - Spin down fermion: 

External conditions: 

  - temperature

  - chemical potential
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Coordinate space 
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Volume L

lattice spacing x
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Periodic boundary conditions imposed 
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Basics of Auxiliary Field Monte Carlo (Path Integral MC) 
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Details of calculations, improvements and problems 
 

• Currently we can reach 163  lattice and perform calcs. down to x = 0.06 

   (x – temperature in Fermi energy units) at the densities of the order of 0.03. 

 

• Effective use of FFT(W) makes all imaginary time propagators diagonal (either in  

   real space or momentum space) and there is no need to store large matrices. 

 

• Update field configurations using the Metropolis importance sampling algorithm. 

  QMC calculations can be split into two independent processes: 

   1) sample generation (generation of sigma fields), 

   2) calculations of observables. 

 

• Change randomly at a fraction of all space and time sites the signs the auxiliary  
   fields σ(r,) so as to maintain a running average of the acceptance rate between 

   0.4 and 0.6 .  

 

• At low temperatures use Singular Value Decomposition of the evolution operator     

  U({σ}) to stabilize the numerics.  

 

• MC correlation “time” ≈ 200 time steps at T ≈ Tc for lattices 103 . 

  Unfortunately when increasing the lattice size the correlation time also increases. 

  One needs few thousands uncorrelated samples (we usually take about 10 000) to 

  decrease the statistical error to the level of 1%.  



S. Nascimbene et al.  

Nature 463, 1057 (2010) 

Courtesy of C. Salomon 

QMC 
Bulgac, Drut, Magierski, 

PRL99, 120401(2006) 

Experiment 

Diagram. MC 
Burovski et al. 

PRL96, 160402(2006) 

Diagram. + analytic 
Haussmann et al. 

PRA75, 023610(2007) 

exp( )



Experiment: M.J.H. Ku, A.T. Sommer, L.W. Cheuk,  
M.W. Zwierlein , Science 335, 563 (2012) 
QMC (PIMC + Hybrid Monte Carlo): J.E.Drut, T.Lähde,  
G.Wlazłowski, P.Magierski, Phys. Rev. A 85, 051601 (2012) 

Equation of state of the unitary Fermi gas - current status 



Local density approximation (LDA) from QMC 
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The overall chemical potential         and the temperature T are constant 
throughout the system. The density profile will depend on the shape of 
the trap as dictated by: 



Using as an input the Monte Carlo results for the uniform system and  
experimental data (trapping potential, number of particles), we determine  
the density profiles. 



Entropy as a function of energy (relative to the ground state) for the 
unitary Fermi gas in the harmonic trap.  

Comparison with experiment  
John Thomas’ group at Duke University, 
L.Luo, et al. Phys. Rev. Lett. 98, 080402, (2007) 

THEORY 

Theory: 

EXP. 

Ratio of the mean square cloud size at B=1200G to  
its value at unitarity (B=840G) as a function of 
 the energy. Experimental data are denoted 
by point with error bars. 

THEORY 
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From Sa de Melo,  
Physics Today (2008) 

Pairing pseudogap: suppression of low-energy spectral weight function due 
to incoherent pairing in the normal state (T >Tc) 

Important issue related to pairing pseudogap: 
- Are there sharp gapless quasiparticles in a normal Fermi liquid  
   YES: Landau’s Fermi liquid theory;  
    NO: breakdown of Fermi liquid paradigm 



Spectral weight function at unitarity: 1( ) 0Fk a  

0.12 FT 

0.15 F CT T 

0.17 FT 
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Magierski, Wlazłowski, Bulgac,           Phys. Rev. Lett.107,145304(2011) 
Magierski, Wlazłowski, Bulgac, Drut, Phys. Rev. Lett.103,210403(2009) 

Gap in the single particle fermionic spectrum - theory 



RF spectroscopy in ultracold atomic gases 

Stewart, Gaebler, Jin, Using  
photoemission spectroscopy  
to probe a strongly  
interacting Fermi gas,  
Nature, 454, 744 (2008) 

Experiment (blue dots): D. Jin’s group 
Gaebler et al. Nature Physics 6, 569(2010) 
Theory (red line): 
Magierski, Wlazłowski, Bulgac, 
Phys.Rev.Lett.107,145304(2011) 



Viscosity in strongly correlated quantum systems: 



In the light of the kinetic theory of gases 
molecules are moving mostly along 
straight lines and occasionally bump onto 
each other. 
 
 

This leads to the Maxwell’s formula for viscosity (1860): 

Mean free path 

Consequences: 
- Non interacting gas is a pathological example of the system with an infinite viscosity 
- Strongly interacting system can have low viscosity since the mean free path is short 

but… 



     -  average momentum 

…but when the system is strongly correlated then the kinetic theory fails! 
 
However: 
If we blindly use this formula we may notice that the Heisenberg uncertainty 
principle would give the following relation:   
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KSS conjecture    
Kovtun, Son, Starinets, Phys.Rev.Lett. 94, 111601, (2005) 
from AdS/CFT correspondence 

For any physical fluid: 



Perfect fluid                     - strongly interacting quantum system = 
4 BS k




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Candidates: quark gluon plasma, atomic gas 

No well defined 
quasiparticles 

Despite of energy scales differing by many orders 
of magnitude, expansion of both system is pretty 
much similar and in particular exhibts the so-called 
elliptic flow. 

Extremely high temperatures: thousands 
billion degrees 



Shear viscosity 
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Additional symmetries and sum rules: 

𝜀 − energy density 



Shear viscosity to entropy ratio – experiment vs. theory 
(from A. Adams et al. New Journal of Physics, "Focus on Strongly Correlated Quantum  
 Fluids: from Ultracold Quantum Gases to  QCD Plasmas„ arXive:1205.5180) 

QMC calculations for UFG:  
G. Wlazłowski, P. Magierski, J.E. Drut,  
Phys. Rev. Lett. 109, 020406 (2012) 

Lattice QCD ( SU(3) gluodynamics ):  
H.B. Meyer, Phys. Rev. D 76, 101701 (2007) 
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Shear viscosity to entropy density ratio 

G.Wlazłowski, P.Magierski,J.E.Drut,  
Phys. Rev. Lett. 109, 020406 (2012) 



Shear viscosity per unit density as a function of temperature 

C. Chafin, T. Schafer,  
 PRA87,023629(2013) 
 P.Romatschke, R.E. Young,  
 arXiv:1209.1604 

Wlazłowski, Magierski, Bulgac, Roche, Phys. Rev. A88, 013639 (2012) 



Spin susceptibility and spin drag rate 

Wlazłowski, Magierski, Bulgac, Drut, Roche,  
Phys. Rev. Lett. 110, 090401,(2013) 
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- spin drag rate 

- spin conductivity 



Formalism for Time Dependent Phenomena: TDSLDA 

Density functional contains normal densities, anomalous density (pairing) and currents: 

Density 
functional for 
unitary Fermi 

gas 

Nuclear energy 
functional: SLy4, 

SkP, SkM*,… 

 
Both codes: SLDA and TDSLDA are formulated on the 3D lattice without any symmetry 
restrictions. 
SLDA generates initial conditions for TDSLDA. 



Road to quantum turbulence 

Classical turbulence:  energy is transfered from  
large scales to small scales where it eventually  
dissipates. 
 

Kolmogorov spectrum:     E(k)=C ε2/3 k-5/3 

 

E – kinetic energy per unit mass associated with the scale 1/k 

ε  -  energy rate (per unit mass) transfered to the system at large scales. 

k  -  wave number (from Fourier transformation of the velocity field). 

C – dimensionless constant. 

Superfluid turbulence (quantum turbulence): disordered set of quantized vortices. 

The friction between the superfluid and normal part of the fluid serves as a source 

of energy dissipation. 

 

 

Problem: how the energy is dissipated in the superfluid system at small scales 
               at T=0?  - „pure” quantum turbulence 
 

Possibility: vortex reconnections → Kelvin  waves → phonon radiation 
 

 



Vortex reconnections 

Bulgac, Luo, Magierski, Roche, Yu, Science 332, 1288 (2011) 



Soliton dynamics vs ring vortex – a controversy   

MIT Experiment: 
Nature 499 (2013) 426 
 

Theory prefers ring vortices: 
A. Bulgac, et al.,  
Phys. Rev. Lett. 112, 025301 (2014) 
G. Wlazłowski, et al.  
Phys. Rev. Lett. (in press) 


