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What is a unitary gas?

A gas of Interacting fermions is in the unitary regime if the average
separation between particles is large compared to their size (range of
Interaction), but small compared to their scattering length.

nr3<< 1llnlaP >> 1 n - particle density
0 ‘ ‘ a - scattering length

r, - effective range
1.C. 1y — O, a — £oo NONPERTURBATIVE
REGIME

System is dilute but
strongly interacting!

Universality: E(X)=&(X)Ers ; X= %
|:
£(0) =0.37(1) - Exp. estimate
EFG - Energy of noninteracting Fermi gas




Cold atomic gases and high Tc superconductors

Bi2223(0D)

La2 14(UD)D
High-temperature
superconductors TMTSF W

&p

La214(0D)

BCS-type @
superconductors Y123 >
A/kpT.~1.76 BKBO‘

Q Al 5. A3 Cﬁﬂv

Nb [Cold atomic gases]

“10*  10° 102 10%  10°
Alep

From Fischer et al., Rev. Mod. Phys. 79, 353 (2007) & P. Magierski, G. Wlaztowski, A. Bulgac, Phys. Rev. Lett. 107, 145304 (2011)



EXPECIEC PASES Ot &l L0 SPECIES chl tite Bermi Sy/Stem
BCS-BEC CrROSSOVER
Characteristic temperatures:

Characteristic temperature: T. superfluid-normal
phase transition

T_ superfluid-normal .
phase transition T 5 break up of Bose molecule
T >T,

weak interactions

MolectlR BEC ancl
AtomicENIoIeEculanG
SUPERHITAGS

weak interaction

BES SUPERHLNG

1/a

Bose
a>0 molecule

a<0
no 2-body bound state shallow 2-body bound state



Unitary limit in 2 and 4 dimensions:

1
a—o: R(r)oc —+0(r""), Two body wave function for r — 0.
r

Intuitive areuments:

- For d=4 j R(r)zd I diverges at the origin

- For d=2 the singularity of the wave function disappears = interaction
also disappears.

4D: noninteracting bosons

Td=4

%Fa - " inferaction

—> 7k.a”

e
2D: noninteracting Fermi gas

The only nontrivial case of unitary regime is in 3D
Nussinov,Nussinov, Phys.Rev. A74, 053622(2006)



Effective Hamiltonian of an atom-atom system
o2

H = Z(\/,hf V.2) + V, (F)Py + V, (F)P, +..
Zlu = Tiesinga, Verhaar,
Stoof, Phys. Rev.
e Ap - = A47, 4114 (1993)
V7 = —7 | -J, V; —Coulomb term

Channel coupling

Closed channel

Feshbach resonance

Openychannel

Regal and Jin, PRL 90, 230404 (2003) Interatomic distance



Short (selective) history:

vIn 1999 DeMarco and Jin created
a degenerate atomic Fermi gas.

vIn 2005 Zwierlein/Ketterle group observed
2uan'rum vortices which survived when passing
rom BEC to unitarity -
evidence for superfluidity!

system of fermionic °Li atoms

Feshbach resonance:
B=834G

- - 0 0 O
UNITARY REGIME

Figure 2| Vortices ina stron ermionic atoms onthe  magnetic field was ramped to 735G for imaging (s . .
BEC- and the BCS-side of the Feshbach resonance. At the given field, the  magnetic fields were 740G (a), 766 G (b), 792G (c M.W. ZWlerIel n et al =y

cloud of lithium atoms was stirred for 300 ms (a) or 500 ms (b-h) followed 843G (f), 853G (g) and 863 G (h). The field of vie Natu re, 435 1047 (2005)
1

by an equilibration time of 500 ms. After 2 ms of ballistic expansion, the 880 pm X 880 pm.



Hamiltonian

A

N

:f+\7=jd3r w1 (F)| - hA v, (F) — g jd r s (M)A (1)
=l 2m

[d’r (A (P)+A,(F)); Ag(F) =T (P (F)

Path Integral Monte Carlo for fermions on 3D lattice

| Volume = L
Coordinate space

PUBEEEmEE lattice spacing =

-.T-E g ======= ® - Spin up fermion: 1
o £ -'.'... - Spin down fermion:
'?::J Z Keut =§ AV I .-"... External conditions:
S o
= B .'..'.. T -temperature
©
7 L ERSURAN

BEERAEEE A - chemical potential

Periodic boundary conditions imposed




Basics of Auxiliary Field Monte Carlo (Path Integral MC)

2
H=T+V=[d’r > T(r)( i Ajws(r) — g [d’r A (PR, (F)
s=T{

N =[d’r (A (M) +A,(F): A(F) = (M (F)
1:_ I + kaUt -Runningcouplingconstantgdefinedbylattice
g Arh®a  27°h?

LM _UNITARY LIMIT

g 27h°AX

A~ ﬁ A~ N
U{c})="1T. exp{—j drlh({o}) — u]}; h({o})— one-body operator

U{oc}), = <l//k| (7({0})|l//l>; ly,) - single-particle wave function

A o(7,7)le "
B(T) = (1) = [PE00E— B (o))

E|lU({c})]- energy associated with a given sigma field

§ _ : 2 _ _ - No sign problem for spin
TrU({c}) ={det[l +U.(o0)|}" = exp[-S({o})] >0 e SR




Details of calculations, improvements and problems

» Currently we can reach 16° lattice and perform calcs. down to x = 0.06
(x — temperature in Fermi energy units) at the densities of the order of 0.03.

» Effective use of FET (W) makes all imaginary time propagators diagonal (either in
real space or momentum space) and there is no need to store large matrices.

» Update field configurations using the Metropolis importance sampling algorithm.
QMC calculations can be split into two independent processes:
1) sample generation (generation of sigma fields),
2) calculations of observables.

» Change randomly at a fraction of all space and time sites the signs the auxiliary
fields o(r,7) so as to maintain a running average of the acceptance rate between

0.4 and 0.6 .

» At low temperatures use Singular VValue Decomposition of the evolution operator
U({c}) to stabilize the numerics.

« MC correlation “time” = 200 time steps at T = T, for lattices 103.
Unfortunately when increasing the lattice size the correlation time also increases.
One needs few thousands uncorrelated samples (we usually take about 10 000) to
decrease the statistical error to the level of 1%.



A Diagram. MC
Burovski et al.
PRL96, 160402(2006)

1.0

Comparison with Many-Body Theories (1)

QMC
Bulgac, Drut, Magierski,
PRL99, 120401(2006)

Diagram. + analytic
Haussmann et al.
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PRA75, 023610(2007)

1S. Nascimbene et al.
{Nature 463, 1057 (2010)
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Equation of state of the unitary Fermi gas - current status
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- e Experiment (MIT)

r —=— BDM, N,=8

N,=10

P N =12

- N,=14

| —# Van Houcke et al.

| —® Goulko & Wingate

| = Burovski et al.

»
3

n(u, T)/ng(u, T)

N

Experiment (MIT) o

Carlson et al., Eqpe 8
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Experiment: M.J.H. Ku, A.T. Sommer, LW. Cheuk,

M.W. Zwierlein , Science 335, 563 (2012)

QMC (PIMC + Hybrid Monte Carlo): J.E.Drut, T.Lahde,
G.Wlaztowski, P.Magierski, Phys. Rev. A 85, 051601 (2012)




Local density approximation (LDA) from QMC

Uniform O=F _;LN — §¢(X)5F \| —ZN

system

Nonuniform 3 3 _} ~ . _ _
e Q= j dr ggF(r)go(x(r))JrU(r)—/l n(F)

(gradient | i
corrections —_— /3
neglected) X (r) .

: =\ 2l

=——; &e(r) —2—[37z n(r)
e (1) m

The overall chemical potential A andthe temperature T are constant

throughout the system. The density profile will depend on the shape of
the trap as dictated by:

&2 S5(F—-AN)
on(r) on(r)
Using as an input the Monte Carlo results for the uniform system and

experimental data (trapping potential, number of particles), we determine
the density profiles.

= u(x(r))+U(r)—-4=0



Comparison with experiment

John Thomas’ group at Duke University,

L.Luo, et al. Phys. Rev. Lett. 98, 080402, (2007)

rth 1.35}
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Ratio of the mean square cloud size at B=1200G to
its value at unitarity (B=840G) as a function of

the energy. Experimental data are denoted

by point with error bars.

Entropy as a function of energy (relative to the ground state) for the
unitary Fermi gas in the harmonic trap.

B =1200G =>1/kra ~ —0.75

Bulgac, Drut, and Magierski
PRL 99, 120401 (2007)

Theory:




From Sa de Melo,
Physics Today (2008)

Preformed

Unbound fermion pairs Bose
fermions ) iqui

Pairing pseudogap: suppression of low-energy spectral weight function due
to incoherent pairing in the normal state (7 >T)

Important issue related to pairing pseudogap:

- Are there sharp gapless quasiparticles in a normal Fermi liquid
YES: Landau’'s Fermi liquid theory;
NO: breakdown of Fermi liquid paradigm




0

Spectral weight function at unitarity: (kF a)_1

T =0.156, ~ T,




In the sinqgle particle fermionic spectrum - theor

Normal Fermi gas

Onset of
the pseudogap
phase

Ab initio result: The onset of pseudogap phase at 1/ak_

Magierski, Wlaztowski, Bulgac, Phys. Rev. Lett.107,145304(2011)
Magierski, Wlaztowski, Bulgac, Drut, Phys. Rev. Lett.103,210403(2009)



RF spectroscopy in ultracold atomic gases

ED(?(p,E,T)szpzj drr?— ")
0 =R\

- pipe=0.3

2712
—FE_+hv = "k -
2m

E(N)=E(N-D)+E.
Stewart, Gaebler, Jin, Using Experiment (blue dots): D. Jin's group

photoemission spectroscopy Gaebler et al. Nature Physics 6, 569(2010)
to probe a strongly

interacting Fermi gas, Theory (red line):

Nature, 454, 744 (2008) Magierski, Wlaztowski, Bulgac,
Phys.Rev.Lett.107,145304(2011)




in strongly correlated guantum systems:

Water and honey flow with different rates:
different viscosity




In the light of the kinetic theory of gases
molecules are moving mostly along
straight lines and occasionally bump onto
each other.

Mean free path

gas molecule .
container

This leads to the Maxwell’s formula for viscosity (1860):

n ~ pvl = mass density X velocity X mean free path

Consequences:
- Non interacting gas is a pathological example of the system with an infinite viscosity

- Strongly interacting system can have low viscosity since the mean free path is short
but...




..but when the system is strongly correlated then the kinetic theory fails!

However:
If we blindly use this formula we may notice that the Heisenberg uncertainty
principle would give the following relation:

For any physical fluid:

n > h KSS conjecture
S — 4 k Kovtun, Son, Starinets, Phys.Rev.Lett. 94, 111601, (2005)
7T B from AdS/CFT correspondence



No well defined

/R ~ -
Perfect fluid < =——— - ;
erfect fluid strongly interacting quantum system s

S 4rnk,
Candidates: quark gluon plasma, atomic gas

Gold nucleus Gold nucleus
® — @

v=0.99995 ¢ v=0.99995 ¢

Expansion of a atomic gas cloud

Extremely high temperatures: thousands
billion degrees

.-

(Cao et al, Science 2010)

Extremely low temperatures: | billionth of a degree

Despite of energy scales differing by many orders
of magnitude, expansion of both system is pretty
much similar and in particular exhibts the so-called

a very dense droplet of matter elliptic flow.
in the beginning




Shear viscosity

(@) = 70, (0 =0,0)/
Gy (0,7) = [ d°r (T, (r, )T, (0,0) )&

G, (0, 7) = ! Py (A @) — [0p12]

i|:jk (r), H ] = alﬁkl (r)

Additional symmetries and sum rules:

G(t) = G(B — 1)

= o C £
l / dw [-n[_w__} — —] =3 €-energy density
JO "

15my/mw

c

n(w — o0) =

15my/mw

cosh|[ew(r - £12)]

dw



Shear viscosity to entropy ratio — experiment vs. theory
(from A. Adams et al. New Journal of Physics, "Focus on Strongly Correlated Quantum
Fluids: from Ultracold Quantum Gases to QCD Plasmas,, arXive:1205.5180)

o‘,i:ra-te-r
\‘ helium

\
\...ﬁ
,
5

holographic bounds

-0.6

Lattice QCD ( SU(3) gluodynamics ): QMC calculations for UFG:
H.B. Meyer, Phys. Rev. D 76, 101701 (2007) G. Wlaztowski, P. Magierski, J.E. Drut,
Phys. Rev. Lett. 109, 020406 (2012)




Shear viscosity to entropy density ratio

PIMC,N,=8 =
PIMC, Ny=10 —e—
- Enssetal.

J o
1A 2RO NS

!

i
il bt

 kinetic theory ——— |

phonons
KSS bound

L

G.WIlaztowski, P.Magierski,J.E.Drut,
Phys. Rev. Lett. 109, 020406 (2012)




Shear viscosity per unit density as a function of temperature

KSS bound-
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PRA87,023629(2013)
QMC {EME} : P.Romatschke, R.E. Young,

N,=8, n=0.08 —e— - arXiv:1209.1604

N,=10,n=0.04 —— |

N,=12,n=0.03 ——
1 I I ] 1 1 1 1

0.5

WIlaztowski, Magierski, Bulgac, Roche, Phys. Rev. A88, 013639 (2012)



Spin susceptibility and spin drag rate

M,= &, n=0.08

8 MN,=10, n=0.04
— N,=12, n=0.03

Fermi liquid

3 Enss & Haussmann
. . Exp. Sanner et al.

o1 T, D02 0.3 04
Tleg

FIG. 2: (Color online) The static spin susceptibility as a fune-
tion of temperature for an 8% lattice solid (red) circles, 10?
lattice (blue) squares and 12* lattice (green) diamonds. Ver-
tical black dotted line indicates the critical temperature of
superfluid to normal phase transition T. = 0.15 2. For com-
parison Fermi liquid theory prediction and recent results of
the T-matrix theory produced by Enss and Haussmann [25]
are plotted with solid and dashed (brown) lines, respectively.
The experimental data point from Ref. [15] is also shown.

5 3 5
&l
mSgm
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PR s b b

T, 02 03 04 0.5
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FIG. 3: (Color online) The spin drag rate I'.y = n/o. in
units of Fermi energy as a function of temperature for an 8°
lattice solid (red) cireles, 10 lattice (blue) squares and 12
lattice (green) diamonds. WVertical black dotted line locates
the critical temperature of superfiluid to normal phase tran-
sition. Results of the T-matrix theory are plotted by dashed
{(brown) line [25]. The inset shows extracted wvalue of the
contact density as function of the temperature. The (purple)
asterisk shows the contact density from the QMC calculations
of Ref. [29] at T" = 0.

n
r=—

Oy

- spin drag rate

o.(w)=7p,(q=0,w)/ @ - spin conductivity

6,00 = ({10~ 120)(%: O - 1%, @)

cosh[aw(r - B12)]
sinh [/ 2]

dw

Wlaztowski, Magierski, Bulgac, Drut, Roche,
Phys. Rev. Lett. 110, 090401,(2013)

G,(q.7) =Tps(q,co)




Formalism for Time Dependent Phenomena: TDSLDA

A.K. Rajagopal and J. Callaway, Phys. Rev. B 7, 1912 (1973)
V. Peuckert, J. Phys. C 11, 4945 (1978)
E. Runge and E.K.U. Gross, Phys. Rev. Lett. 52, 997 (1984)

hpa(e.t)  hy(r.t)  —A(r.7) 0

O —A*(r,t) —hi(r.t) —hi (r,1)
At(et) 0 B =R ()

Density functional contains normal densities, anomalous density (pairing) and currents:

E)=[d’r [ en(.0.7G.0.vF 0, jGE OV, G On@E, 0+ ]

Density
functional for
unitary Fermi

gas

Nuclear energy
functional: SLy4,
SkP, SkKM*,...

Both codes: SLDA and TDSLDA are formulated on the 3D lattice without any symmetry
restrictions.
SLDA generates initial conditions for TDSLDA.



Road to quantum turbulence

Classical turbulence: energy is transfered from
large scales to small scales where it eventually
dissipates.

Kolmogorov spectrum:  E(K)=C €23 k'3

E — kinetic energy per unit mass associated with the scale 1/k

€ - energy rate (per unit mass) transfered to the system at large scales.
k - wave number (from Fourier transformation of the velocity field).

C — dimensionless constant.

Superfluid turbulence (quantum turbulence): disordered set of quantized vortices.
The friction between the superfluid and normal part of the fluid serves as a source
of energy dissipation.

Problem: how the energy is dissipated in the superfluid system at small scales
at T=0? - .pure” quantum turbulence

Possibility: vortex reconnections — Kelvin waves — phonon radiation




Vortex reconnections X >

Fig. 3. (Ato D) Two vortex lines approach each other, connect at two points, form a ring and exchange between them a portion of the vortex line, and subsequently
separate. Segment (a), which initially belonged to the vortex line attached to the wall, is transferred to the long vortex line (b) after reconnection and vice versa.

Bulgac, Luo, Magierski, Roche, Yu, Science 332, 1288 (2011)



Soliton dynamics vs ring vortex — a controversy

P00NNNNANANRNARY

MIT Experiment:
Nature 499 (2013) 426

Theory prefers ring vortices:
A. Bulgac, et al.,

Phys. Rev. Lett. 112, 025301 (2014)

G. Wlaztowski, et al.

Phys. Rev. Lett. (in press)

Figure 1 | Creation and observation of solitons in a fermionic superfluid.
a, Superfluid pairing gap A(z) for a stationary soliton, normalized by the bulk
pairing gap A,, and density n(z) of the localized bosonic (fermionic) state versus
position z, in the BEC (BCS) regime of the crossover, in units of the BEC healing
length (BCS coherence length) &. b, Diagram of the experiment. A phase-
imprinting laser beam twists the phase of one-half of the trapped superfluid by
approximately m. The soliton generally moves at non-zero velocity v jiton-

<, Optical density and d, residuals (optical density minus a smoothed copy of the
same image) of atom clouds at 815 G, imaged via the rapid ramp method™,
showing solitons at various hold times after creation. One period of soliton
oscillation is shown. The in-trap aspect ratio was A = 6.5(1). e, Radially integrated
residuals as a function of time revealing long-lived soliton oscillations. The soliton
period is T, = 12(2)7_, much longer than the trapping period of 7. = 93.76(5) ms,
revealing an extreme enhancement of the soliton’s relative effective mass, M*/M.



