The Properties of the Unitary Fermi
Gas at Finite Temperatures —
Quantum Monte Carlo approach
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Scattering at low energies
(s-wave scattering)
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If k—0 then the interaction is determined by the scattering length alone.
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Erg = gg,: N - Energy of the noninteracting Fermi gas

» What is the unitary regime?

A gas of interacting fermions is in the unitary regime if the average
separation between particles 1s large compared to their size (range of
interaction), but small compared to their scattering length.
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System is dilute but
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In dilute atomic systems experimenters can control nowadays

almost anything:

» The number of atoms in the trap: typically about 10°-10° atoms
divided 50-50 among the lowest two hyperfine states.

* The density of atoms

» Mixtures of various atoms

» The temperature of the atomic cloud

* The strength of this interaction is fully tunable!

Who does experiments?

e Jin’s group at Boulder

e Grimm’s group in Innsbruck
 Thomas’ group at Duke

» Ketterle’s group at MIT

e Salomon’s group in Paris

e Hulet’s group at Rice
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Physics Today, v54, 20 (2001)



One fermionic atom in magnetic field
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Li ground state in a magnetic field

+J: J=L+S

Nuclear spin  Electronic spin

TR Two hypefine states are
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B iGauss)

Collision of two atoms: At |ow energies (low density of atoms) only L=0
(s-wave) scattering is effective.

* Due to the high diluteness atoms in the same hyperfine
state do not interact with one another.

» Atoms in different hyperfine states experience interactions
only in s-wave.



Effective Hamiltonian of an atom-atom system
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One open channel with one resonant bound state
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Evidence for fermionic
superfluidity: vortices!

system of fermionic °Li atoms

Feshbach resonance:
B=834G

a b c d
BEC side: . . . .
- —
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M.W. Zwierlein et al.,

Figure 2 | Vortices in a strf@aly interacting gas of @Pmionic atoms onthe  magnetic feld was ramped to 735 G for imaging | Natu re 435 1047 (2005)
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BEC- and the BCS-side of the™e > AL the given field, the magnetic fields were 740G (a), 766 G (b}, 792G |

UNITARY REGIME

cloud of lithium atoms was stirred ot 300 ms (a) or 500 ms (b—h) followed B43 G (f), 853G (g) and 863 G (h). The field of view of cach image is
by an equilibration time of 500 ms. After 2 ms of ballistic expansion, the 880 pm = 880 pm.

Numerical simulations: see movies at www.phys.washington.edu/groups/qmbnt/vortices_movies.html



Coordinate space Volume = L
PUNBBEEEE lattice spacing = AX
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Periodic boundary conditions imposed

L —limit for the spatial
correlations in the system

T -temperature
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Running coupling constant g defined by lattice
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Trotter expansion (trotterization of the propagator)
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More details of the calculations:

» Lattice sizes used: 6°— 10°.
Imaginary time steps:83 x 300 (high Ts) to 83 x 1800 (low T's)

 Effective use of FFT(W) makes all imaginary time propagators diagonal (either in
real space or momentum space) and there is no need to store large matrices.

» Update field configurations using the Metropolis importance sampling algorithm.
* Change randomly at a fraction of all space and time sites the signs the auxiliary
fields o(r,T) so as to maintain a running average of the acceptance rate between

0.4 and 0.6 .

* Thermalize for 50,000 — 100,000 MC steps or/and use as a start-up field
configuration a o(x,7)-field configuration from a different T

» At low temperatures use Singular Value Decomposition of the evolution operator
U({o}) to stabilize the numerics.

e Use 200,000-2,000,000 o(x,7)- field configurations for calculations

* MC correlation “time” = 250 — 300 time steps at T= T



A — =00 Deviation from Normal Fermi Gas

I Normal Fermi Gas
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Ideal Fermi gas
entropy




Thermodynamics of the unitary Fermi gas
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Note the similarity to
P == E <: the ideal Fermi gas




Low temperature behaviour of a Fermi gas in the unitary regime
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Lattice results disfavor
either n=3 or n<2
and suggest n=2.5(0.25)

This is the same behavior as for a gas of
noninteracting (!) bosons below
the condensation temperature.




Experiment

John Thomas’ group at Duke University,
L.Luo, et al. Phys. Rev. Lett. 98, 080402, (2007)

Dilute system of fermionic °Li atoms in a harmonic trap

e The number of atoms in the trap: N=1.3(0.2) x 10> atoms
divided 50-50 among the lowest two hyperfine states.

e Fermi energy: EF =nhCQ(3N) (a)xa)ya)z )

e /kg =~ 1uK
* Depth of the potential: U, = 105,20
» How they measure: energy, entropy and temperature?
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3 >—> N <U> =§ - virial theorem
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_ . Holds at unitarity and for
n(r) - local density noninteracting Fermi gas




For the weakly interacting gas (B=1200G =1/kza~—-0.75) the energy
and entropy is calculated. In this limit one can use Thomas-Fermi
approach to relate the energy to the given density distribution.

The entropy can be estimated as for the noninteracting system with

0 ice:
1% accuracy. In practice: <22> — E, S
B=1200

*The magnetic field is changed adiabatically (S=const.) to the value
corresponding to the unitary limit: B = 840G = 1/kra =0
*Relative energy in the unitary limit is calculated from virial theorem:

E(Tl):<22>T
e (),
188

eTemperature is calculated from the identity: —
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Uniform
system

Nonuniform

system
(gradient

corrections
neglected)

Theory: local density approximation (LDA)
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The overall chemical potential 4 and the temperature T are constant
throughout the system. The density profile will depend on the shape of
the trap as dictated by:
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(ry-4=0

Using as an input the Monte Carlo results for the uniform system and
experimental data (trapping potential, number of particles), we determine
the density profiles.



Comparison with experiment
John Thomas’ group at Duke University,

L.Luo, et al. Phys. Rev. Lett. 98, 080402, (2007)
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B =1200G = 1/kea~—0.75

Theory: Bulgac, Drut, and Magierski
PRL 99, 120401 [2007)
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Results in the vicinity
of the unitary limit:
-Critical temperature
-Pairing gap at T=0

Note that

- at unitarity:

A/ eg =0.5
~0.03

- for atomic nucleus:A/ 8|:

BCS theory predicts:

AT =0)/T. =1.7

At unitarity:

AT =0)/T. =3.3

This is NOT a BCS superfluid!

Bulgac, Drut, Magierski, PRA78, 023625(2008)



Pairing gap
Spectral weight function: A(p,®)
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| From Monte Carlo calcs. |

In the limit of independent quasiparticles: A( ﬁ, a)) = 272'5(&)— E( p))




Pairing gap and pseudogap

Outside the BCS regime close to the unitary limit, but still before BEC,
superconductivity/superfluidity emerge out of a very exotic, non-Fermi
liquid normal state

pseudogap

== Monte Carlo calculations

The onset of superconductivity occurs
In the presence of fermionic pairs!




Single-particle properties

Effective mass: m =(1.0£0.2)m

Mean-field potential: U=(-05102)s

Weak temperature dependence!

Quasiparticle spectrum
extracted from soectral weight
functionat T =0.lge

- B This work
Eqp fit
@® Carlson and Reddy
2

Fixed node MC calcs. at T=0




Dashed, dotted
and solid lines

Parameters (effective mass, mean-field potential, pairing gap) extracted from the
response function within the lndependent quasiparticle model accurately reproduce
results obtained directly from the spectral weight function below the critical temperature!




Conclusions

v Fully non-perturbative calculations for a spin ’2 many fermion
system in the unitary regime at finite temperatures are feasible and

apparently the system undergoes a phase transition in the bulk at
T.=0.15 () gg.

v' Between T, and T;=0.23(2) ¢, the system is neither superfluid nor

follows the normal Fermi gas behavior. Possibly due to pairing effects.

v" Results (energy, entropy vs temperature) agree with recent measurments:
L. Luo et al., PRL 98, 080402 (2007)

v The system at unitarity is NOT a BCS superfluid. There is an evidence for the
existence of pseudogap at unitarity (similarity with high-Tc¢ supeconductors).

v Description of the system at finite temperatures will pose a challenge for the density
functional theory (two temperature scales are present).

v Surprisingly at low temperatures the gap extracted from the response function
within the independent quasiparticle model accurately reproduce the one obtained
from the spectral weight function.
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