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Pairing as an energy gap
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Quasiparticle energy:

Single-particle levels

Deformation

Potential energy surface

Deformation

From Barranco, Bertsch, Broglia, and Vigezzi

Nucl. Phys. A512, 253 (1990)

As a consequence of pairing correlations 
large amplitude nuclear motion becomes 
more adiabatic. 

While a nucleus elongates its Fermi surface 
becomes oblate and its sphericity must be restored

Hill and Wheeler, PRC, 89, 1102 (1953)
Bertsch, PLB, 95, 157 (1980)
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Appearance of pairing field in Fermi systems is associated with U(1) symmetry breaking.

There are two characteristic modes associated with the 
field

1) Nambu-Goldstone mode explores the degree of 
freedom associated with the phase:

2) Higgs mode explores the degree of freedom 
associated with the magnitude: 
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What’s the difference between pairing correlations and existence of superfluid phase?

- Superfluid phase exists if the off-diagonal long range order is present:

- This limit is unreachable in atomic nuclei due to their finite size. Therefore it is
  more convenient to look, instead, for the manifestations of the phase:: 

C.N. Yang, Rev. Mod. Phys. 34, 694 (1962)

( , )( , ) ( , ) i r tr t r t e  = 

Note: whenever I mention theory I mean: time dependent HFB (TDHFB) or time dependent
Density Functional Theory (TDDFT) with local pairing field.



The well known effects in superconductors where the simplified BCS approach fails

1) Quantum vortices,
solitonic excitations 
related to pairing field
(e.g. domain walls)

2) Bogoliubov – Anderson phonons

3) proximity effects:  variations of 
     the pairing  field on the length 
     scale of the coherence length. 

4) physics of Josephson  junction    
    (superfluid - normal metal), 
     pi-Josephson junction
     (superfluid - ferromagnet)

5) Andreev reflection 
   (particle-into-hole and hole-into-particle scattering)
   Andreev states cannot be obtained within BCS
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Pairing correlations in DFT

One may extend DFT to superfluid systems by defining the pairing field:

and introducing anomalous density

However in the limit of the local field these quantities diverge unless one renormalizes 
the coupling constant:

which ensures that the term involving the kinetic and the pairing energy density is finite: 
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A. Bulgac, Y. Yu, Phys. Rev. Lett. 88 (2002) 042504

A. Bulgac,  Phys. Rev. C65 (2002) 051305

It allows to reduce the size of the problem for static calculations by introducing the energy cutoff

Triggered by discovery of high-Tc superconductors



In order to fulfill the completeness relation of Bogoliubov transform all states need to be
evolved! 
Otherwise Pauli principle is violated, i.e. the evolved densities do not describe a fermionic 
system (spurious bosonic effects are introduced).

Consequence: the computational cost increases considerably.
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Orthogonality and completeness has to be fulfilled:

Pairing correlations in time-dependent superfluid local density approximation (TDSLDA)

Stationarity requirement produces the set of equations:

P. Magierski, Nuclear Reactions and Superfluid Time Dependent Density Functional Theory, Frontiers in Nuclear and 
Particle Physics vol. 2, 57 (2019)
A. Bulgac, Time-Dependent Density Functional Theory and Real-Time Dynamics of Fermi Superfluids, Ann. Rev. Nucl. Part. 
Sci. 63, 97 (2013)



Solving time-dependent problem for superfluids...
The real-time dynamics is given by equations, which are formally equivalent to the Time-Dependent HFB (TDHFB) 
or Time-Dependent Bogolubov-de Gennes (TDBdG) equations

We explicitly track 
fermionic degrees 
of freedom!

where h and Δ depends on “densities”:

huge number of nonlinear  coupled 3D  
Partial  Differential  Equations
(in practice n=1,2,…, 105 - 106)

Present computing capabilities:
full 3D (unconstrained) superfluid dynamics

spatial mesh up to 1003

max. number of particles of the order of 104

up to 106 time steps 

(for cold atomic systems – time scale: a few ms

      for nuclei – time scale: 100 zs)

• P. Magierski, Nuclear Reactions and Superfluid Time Dependent Density 
Functional Theory, Frontiers in Nuclear and Particle Physics, vol. 2, 57 
(2019)

• A. Bulgac, Time-Dependent Density Functional Theory and Real-Time 
     Dynamics of Fermi Superfluids, Ann. Rev. Nucl. Part. Sci. 63, 97 (2013)
• A. Bulgac, M.M. Forbes, P. Magierski, 
      Lecture Notes in Physics, Vol. 836, Chap. 9, p.305-373 (2012)  
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Nuclear fission dynamics

A. Bulgac, P.Magierski, K.J. Roche, and  I. Stetcu, Phys. Rev. Lett. 116, 122504 (2016)

Estimation of characteristic time scales
for low energy fission ( <10MeV ):

Ground state to saddle     -        1 000 000 zs       
Saddle to scission              -             10-100 zs
Acceleration of fission fragments
to 90% of their final velocity   -             10 zs
Neutron evaporation                -        1 000 zs
1 zs = 10-21 s From F. Gonnenwein FIESTA2014

Fission dynamics of        Pu within TDSLDA 240

Calculated TKEs 
reproduce
experimental data 
with accuracy < 2%

Total kinetic energy of the fragments



Trajectories of fissioning    𝑃𝑢 in the collective
space at excitation excitation energy of E=8-9 MeV:

240

Accelerations in quadrupole and octupole
moments along the fission path

Fission dynamics of     Pu 240

Note that despite the fact that nucleus is already beyond the saddle point the collective 
motion on the time scale of 1000 fm/c and larger is characterized by the constant velocity  
(see red dashed line for an average acceleration) till the very last moment before splitting.
On times scales, of the order of 300 fm/c and shorter, the collective motion is a subject to 
random-like kicks indicating strong coupling to internal d.o.f

A. Bulgac, et al. Phys. Rev. C 100, 034615 (2019)



In TDDFT such a decomposition can be 
performed as well.
The intrinsic energy in TDDFT will be partitioned 
dynamically (no sufficient time for equilibration).

Remarks on the fragment kinetic and excitation energy sharing within the TDDFT

In the to-date approaches it is usually assumed that 
the excitation energy has 3 components 
(Schmidt&Jurado:Phys.Rev.C83:061601,2011 Phys.Rev.C83:014607,2011):

- deformation energy
- collective energy (energy stored in collective modes)
- intrinsic energy (specified by the temperature)
It is also assumed that the intrinsic part of the energy is 
sorted according to the total entropy maximization of two
nascent fragments (i.e. according to temperatures, 
level densities) and the fission dynamics does not matter. Schmidt&Jurado:Phys.Rev.C83:061601,2011 

scission

Light fragment:

Heavy fragment:

SLy4

102A 

138A 



The main questions are: 
-how a possible solitonic structure can be manifested in nuclear system? 
-what observable effect it may have on heavy ion reaction:
  kinetic energy distribution of fragments, capture cross section, etc.?

Clearly, we cannot control phases of the pairing field in nuclear experiments and 
the possible signal need to be extracted after averaging over the phase difference.

Collisions of superfluid nuclei having different phases of the pairing fields

„Heavy soliton” creation in nuclear collision

From Ginzburg-Landau (G-L) approach:

For typical values characteristic for two medium nuclei: 30jE MeV



Total kinetic energy of the fragments (TKE)

Average particle transfer between fragments.
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Creation of the solitonic structure between colliding nuclei prevents energy 
transfer to internal degrees of freedom and consequently enhances the kinetic
energy of outgoing fragments.
Surprisingly, the gauge angle dependence from the G-L approach is perfectly
well reproduced in the kinetic energies of outgoing fragments!
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240Pu+240Pu

P. Magierski, K. Sekizawa, G. Wlazłowski, Phys. Rev. Lett. 119 042501 (2017)



Dynamic nature of the effect:

Solid lines: static barrier between two nuclei (with
pairing included):
90Zr+90Zr - brown
96Zr+96Zr - black (0-phase diff.) and 
                      blue (Pi-phase diff.) 
Static barriers are practically insensitive to the 
phase difference of pairing fields.

Dashed lines: Actual threshold for capture
obtained in dynamic calculations.
Hence           measures the additional energy which
has to be added to the system to merge nuclei.

E

Dependence of the additional energy
on pairing gap in colliding nuclei

P. Magierski, A. Makowski, M. Barton, K. Sekizawa, G. Wlazłowski, Phys. Rev. C 105, 064602, (2022)

G. Scamps, Phys. Rev. C 97, 044611 (2018):  barrier fluctuations extracted from experimental  data provide evidence that the 
effect exists.



- coupling constant is switched on withing time scale 
  much shorter than

Pairing Higgs mode

Let’s consider Fermi gas with schematic pairing interaction and
coupling constant depending on time:

As a result pairing becomes unstable and increases exponentially

Time scale of growth and the period of subsequent oscillation is related to static value of
pairing          :



Pairing instability in nuclear reaction
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- BCS formula – weak coupling limit       
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- Fermi energy

- Pairing coupling constant

- Density of states at the Fermi level

Although one cannot change coupling constant in atomic nuclei one may affect
density of states at the Fermi surface and consequently trigger pairing instability.

Collision of two neutron magic 
systems creates an elongated
di-nuclear system.

Within 1500 fm/c pairing is
enhanced in the system
and reveals oscillations with
frequency: 

2   

Collision time

P.Magierski, A. Makowski, M. Barton, K. Sekizawa, G. Wlazłowski, Phys. Rev. C 105, 064602, (2022)



Exponential increase of pairing gap
after collision indicating pairing
instability in di-nuclear system.
Time scale of pairing enhancement:

Interestingly the effect is generic and occurs for various collisions of magic nuclei.

It occurs up to relatively high collision energies

The excitation energy of a compound system after merging exceeds 20-30 MeV.
It corresponds to temperatures close to critical temperature for superfluid-to-normal transition.
Therefore it is unlikely that the system develops superfluid phase and it is rather nonequilibrium enhancement of pairing 
correlations. 

Collision time
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Summary and open questions

• Induced fission: the nuclear motion from sadle to scission is not adiabatic, although it is slow.

• Excitation energy sharing: depending on dynamics and density of states at scission - very severe 
      test for TDDFT.

• TDHFB provides evidence for nontrivial behavior of pairing correlations in highly nonequilibrium 
conditions which includes solitonic excitations (dynamic barrier modification for capture) and pairing 
enhancement as a result of collision.

• There is certain experimental evidence for solitonic excitations, although not easy to
      extract (G. Scamps, Phys. Rev. C C 97, 044611 (2018) ).

• Pairing enhancement in collision of magic nuclei is a generic feature of TDHFB appearing in collisions
       of magic nuclei at energies close to the Coulomb barrier.

• Impact of pairing enhancement on dynamics is unknown and requires more theoretical 
      effort: investigation of noncentral collisions, considerations of pairing correlations during 
      subsequent stages of compound nucleus formation.
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