Exotic Features of Superfluidity in Ultracold **Atomic Gases**

Piotr Magierski Warsaw University of Technology

HPC::

CAK RIDGE National Laboratory

Global Scientific Information and Computing Center

Center for Computational Sciences 筑波大学 計算科学研究センター

Collaboration

Warsaw University of Technology

Andrea Barresi Matthew Barton Antoine Boulet <u>Konrad Kobuszewski</u> Andrzej Makowski Daniel Pęcak <u>Buğra Tüzemen</u> Marek Tylutki <u>Gabriel Wlazłowski</u> Tomasz Zawiślak

Tokyo Institute of Technology Kazuyuki Sekizawa

University of Washington Aurel Bulgac

Washington State University

Edward Eskew <u>Khalid Hossain</u> <u>Michael M. Forbes</u> Saptarshi R. Sarkar

Pacific Northwest National Laboratory

Kenneth J. Roche

Newcastle University

Nikolaos Proukakis Klejdja Xhani

What are ultracold atomic gases?

Photo from the Nobe Foundation archive

Claude Cohen-Tannoudji

Foundation archive.

Steven Chu

Photo from the N Foundation archive.

William D. Phillips

Nobel Prize in Physics 1997

"for development of methods to cool and trap atoms with laser light"

Idea od laser cooling

Schematic realization of optical molasses

- Alkali atoms (fermions) used for trapping and cooling: ⁶Li, ⁴⁰K
- Laser light (via Doppler effect) is used to create optical • *molasses* which decrease the velocity width of atomic cloud and cool it down.
- Sub-doppler cooling is achieved through *Sisyphus cooling* and/or *evaporative cooling* and allows to reach temperatures below microkelvins
- <u>Dilute cloud of 10⁵-10⁶ atoms is kept in magneto-optical trap</u> (MOT)

FIG. 12. Doppler cooling in one dimension.

In dilute atomic systems experimenters can control nowadays almost anything:

- The number of atoms in the trap: typically about 10⁵⁻10⁶ atoms divided 50-50 among the lowest two hyperfine states.
- The density of atoms
- Mixtures of various atoms
- The temperature of the atomic cloud
- The strength of this interaction is fully tunable!

240 n

Evidence for fermionic superfluidity in ultracold atomic gases.

Rotation of a superfluid cloud leads to generation of **quantum vortices**

M.W. Zwierlein *et al.,* Nature, 435, 1047 (2005)

Figure 2 | Vortices in a strongly interacting gas of fermionic atoms on the BEC- and the BCS-side of the Feshbach resonance. At the given field, the cloud of lithium atoms was stirred for 300 ms (a) or 500 ms (b-h) followed by an equilibration time of 500 ms. After 2 ms of ballistic expansion, the

magnetic field was ramped to 735 G for imaging (see text for details). The magnetic fields were 740 G (a), 766 G (b), 792 G (c), 812 G (d), 833 G (e), 843 G (f), 853 G (g) and 863 G (h). The field of view of each image is $880 \,\mu\text{m} \times 880 \,\mu\text{m}$.

Why do we need supercomputers to simulate ultracold gases?

Evolution of Cooper pair field (pairing field) is at the heart of theoretical description of superfluids : $\Delta(\vec{r}, t) = |\Delta(\vec{r}, t)|_{o} i\phi(\vec{r}, t)$

$$\Delta(\vec{r},t) = \left| \Delta(\vec{r},t) \right| e^{i\phi(\vec{r},t)}$$

Method: Time Dependent Density Functional Theory Replacing hard-to-solve linear Schroedinger eq.

$$i\hbar\frac{\partial}{\partial t}\psi = \hat{H}\psi$$

by huge set (10⁵-10⁶) partial differential, nonlinear eqs.

(Superfluid Local Density Approximation):

$$i\hbar\frac{\partial}{\partial t} \begin{pmatrix} u_{n,a}(\boldsymbol{r},t) \\ u_{n,b}(\boldsymbol{r},t) \\ v_{n,a}(\boldsymbol{r},t) \\ v_{n,b}(\boldsymbol{r},t) \end{pmatrix} = \begin{pmatrix} h_a(\boldsymbol{r},t) & 0 & \Delta(\boldsymbol{r},t) \\ 0 & h_b(\boldsymbol{r},t) & -\Delta(\boldsymbol{r},t) & 0 \\ 0 & -\Delta^*(\boldsymbol{r},t) & -h_a^*(\boldsymbol{r},t) & 0 \\ \Delta^*(\boldsymbol{r},t) & 0 & 0 & -h_b^*(\boldsymbol{r},t) \end{pmatrix} \begin{pmatrix} u_{n,a}(\boldsymbol{r},t) \\ u_{n,b}(\boldsymbol{r},t) \\ v_{n,a}(\boldsymbol{r},t) \\ v_{n,b}(\boldsymbol{r},t) \end{pmatrix}$$

where h and Δ depends on "densities":

$$n_{\sigma}(\boldsymbol{r},t) = \sum_{E_n < E_c} |v_{n,\sigma}(\boldsymbol{r},t)|^2, \qquad \tau_{\sigma}(\boldsymbol{r},t) = \sum_{E_n < E_c} |\nabla v_{n,\sigma}(\boldsymbol{r},t)|^2,$$
$$v(\boldsymbol{r},t) = \sum_{E_n < E_c} u_{n,\uparrow}(\boldsymbol{r},t) v_{n,\downarrow}^*(\boldsymbol{r},t), \qquad \boldsymbol{j}_{\sigma}(\boldsymbol{r},t) = \sum_{E_n < E_c} \operatorname{Im}[v_{n,\sigma}^*(\boldsymbol{r},t) \nabla v_{n,\sigma}(\boldsymbol{r},t)],$$

More details: A. Bulgac, M.M. Forbes, P. Magierski, *The Unitary Fermi Gas: From Monte Carlo to Density Functionals*, Lecture Notes in Physics 836 ed. W. Zwerger, Springer (2011).

https://wslda.fizyka.pw.edu.pl

static problems: st-wsldal

EN

Warsaw University W-SLDA of Technology | Toolkit

W-SLDA Toolkit

Self-consistent solver of mathematical problems which have structure formally equivalent to Bogoliubov-de Gennes equations.

$$\begin{pmatrix} h_a(\boldsymbol{r}) - \mu_a & \Delta(\boldsymbol{r}) \\ \Delta^*(\boldsymbol{r}) & -h_b^*(\boldsymbol{r}) + \mu_b \end{pmatrix} \begin{pmatrix} u_n(\boldsymbol{r}) \\ v_n(\boldsymbol{r}) \end{pmatrix} = E_n \begin{pmatrix} u_n(\boldsymbol{r}) \\ v_n(\boldsymbol{r}) \end{pmatrix}$$

time-dependent problems: td-wslda

$$i\hbar\frac{\partial}{\partial t}\begin{pmatrix}u_n(\boldsymbol{r},t)\\v_n(\boldsymbol{r},t)\end{pmatrix} = \begin{pmatrix}h_a(\boldsymbol{r},t)-\mu_a & \Delta(\boldsymbol{r},t)\\\Delta^*(\boldsymbol{r},t) & -h_b^*(\boldsymbol{r},t)+\mu_b\end{pmatrix}\begin{pmatrix}u_n(\boldsymbol{r},t)\\v_n(\boldsymbol{r},t)\end{pmatrix}$$

Contributors

Project leader

Gabriel Wlazłowski

m Warsaw University of Technology, Faculty of Physics 🛃 Main developer of the W-SLDA Toolkit

Theory expertise

Aurel Bulgac

🏛 Department of Physics, University of Washington 🌲 Aurel Bulgac derived Superfluid Local Density Approximation (SLDA) equations for cold atoms, presently implemented in W-SLDA Toolkit. He also supervised implementation of core algorithms of td-wslda codes.

Piotr Magierski

🏛 Warsaw University of Technology, Faculty of Physics 🖀 Piotr Magierski contributed to development of Superfluid Local Density Approximation (SLDA) method.

Michael McNeil Forbes

🟛 Department of Physics and Astronomy, Washington State University 🖀 Michael Forbes together with Aurel Bulgac developed Asymmetric Superfluid Local Density Approximation (ASLDA) for spin-imbalanced atomic gases.

HPC expertise

Kenneth J. Roche

m Pacific Northwest National Laboratory 🖀 Kenneth J. Roche supervised parallelization process (MPI + CUDA) of main engine of td-wslda codes.

Maciej Marchwiany

m Interdisciplinary Centre for Mathematical and Computational Modelling (ICM) Implementation of parallel I/O in td-wslda codes (2016-2018)

Speed-up calculations by exploiting High Performance Computing

Functionals for studies of BCS and unitary regimes

in 3D without any symmetry restrictions: $\Psi = \varphi(x,y,z)$ in 2D with translational invariance along z direction: $\Psi=0$ in 1D with translational invariance along y and z direction

Dimensionalities of problems: 3D, 2D and 1D

W-SLDA allows to solve problems

W-SLDA is integrated with open-source VisIt tool. It allows for:

Integration with VisIt: visualization, animation and analysis tool

To execute superfluid TDDFT we need supercomputers...

Rpeak Rmax Power Rank System (TFlop/s) (TFlop/s) (kW) Cores Summit - IBM Power System AC922, IBM POWER9 22C 3.07GHz, 2,397,824 143,500.0 200,794.9 9,783 NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband, IBM DOE/SC/Oak Ridge National Laboratory United States 2 Sierra - IBM Power Syst Present computing capabilities: NVIDIA Volta GV100. Dua NVIDIA / Mellanox DOE/NNSA/LLNL United States full 3D (unconstrained) All further results Sunway TaihuLight - Sur 3 shown here were superfluid dynamics Sunway, NRCPC generated on National Supercomputin Piz Daint (CSCS) China spatial mesh up to 100³ Tianhe-2A - TH-IVB-FEF 4 TH Express-2, Matrix-20 National Super Compute max. number of particles of the order of 10⁴ China Piz Daint - Cray XC50, Xe 5 interconnect, NVIDIA Te up to 10^6 time steps Swiss National Supercor (for cold atomic systems it gives Switzerland 6 Trinity - Cray XC40, Xeon a trajectory of length of a few ms) 68C 1.4GHz, Aries interc DOE/NNSA/LANL/SNL United States

391,680

19,880.0

32,576.6 1,649

https://www.topa500.org/

 Al Bridging Cloud Infrastructure (ABCI) - PRIMERGY CX2570 M4, Xeon Gold 6148 20C 2.4GHz, NVIDIA Tesla V100 SXM2, Infiniband EDR, Fujitsu National Institute of Advanced Industrial Science and Technology

Example 1: Atomic cloud collisions - decay of solitonic excitations

excitations involving: "Phi"-soliton and vortex line.

G. Wlazłowski, K. Sekizawa, M. Marchwiany, P. Magierski, Phys. Rev. Lett. **120**, 253002 (2018)

Spin imbalanced ultracold atomic gas in the unitary regime

 $N_{\uparrow} = 304, \ N_{\downarrow} = 202, \ P = 20\%$

The vortex core becomes polarized.

This may be understood noting that the most energetically favorable place to store excess of unpaired spins is at the core of the vortex where, $\Delta = 0$ - no Cooper pairs need to be broken.

New effects predicted for spin-polarized systems:

Impact on the solitonic cascade:

final product of the cascade depends on the spin imbalance in the system

Stability of topological defect depends on its internal structure...

→ For sufficiently large spin-imbalance dark solitons become stable (no snake instability) (see also: Reichl & Mueller, PRA 95, 053637; Lombardi, et. al., PRA 96, 033609)

G. Wlazłowski, K. Sekizawa, M. Marchwiany, P. Magierski, Phys. Rev. Lett. 120, 253002 (2018)

Predictions for atomic gas in the unitary regime: A. Bulgac, M.M.Forbes, Phys. Rev. Lett. 101,215301 (2008)

Engineering the structure of nodal surfaces in ultracold atomic gas

Generation of *ferron* in the unitary regime

Ferron structure

The velocities of impurites are about 30% of the velocity of sound.

Peculiarity of ferron dynamics: there is a limiting velocity propotional to its polarization.

Example 3: Generation and decay of quantum turbulent state

Problem: how to generate the turbulence?

→ Our suggestion: *imprint few dark solitons on existing vortex lattice* → *rotating turbulence* (nonzero total angular momentum)

K. Hossain, K. Kobuszewski, M.M. Forbes, P. Magierski, K. Sekizawa, G. Wlazłowski, arXiv:2010.07464

K. Hossain, K. Kobuszewski, M.M. Forbes, P. Magierski, K. Sekizawa, G. Wlazłowski, arXiv:2010.07464

Thank you