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From a review:

This book is an important addition to the fundamental physics literature. A good background in basic
concepts of nuclear theory, including the shell and collective models is a prerequisite, and, for some
sections, knowledge of certain techniques in the theory of direct nuclear reactions is required. Thus, fore-

armed, the dedicated reader will come away from this work richly rewarded.
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Basics of Density Functional Theory
Basics of Density Functional Theory for Superfluids

Applications:
Nuclear fission and collisions
Modelling neutron star interior: vortex dynamics
Ultracold Fermi gases
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Robert B. Laughlin, Nobel Lecture, December 8, 1998:

One of my favorite times in the academic year occurs [..] when | give
my class of extremely bright graduate students [..] a take home exam
in which they are asked TO DEDUCE SUPERFLUIDITY FROM FIRST
PRINCIPLES.

There is no doubt a special place in hell being reserved for me at this
very moment for this mean trick, for the task is IMPOSSIBLE.
Superfluidity [..] iIs an EMERGENT phenomenon — a low energy
collective effect of huge number of particles that CANNOT be deduced
from the microscopic equations of motion in a RIGOROUS WAY and
that DISAPPEARS completely when the system is taken apart.

[..]students who stay in physics long enough [..] eventually come to
understand that the REDUCTIONIST IDEA IS WRONG a great deal of
the time and perhaps ALWAYS.




Critical tempPEratuiFES 1o SUPErCOnUCHVAT anc SUPEEHtNCIEY
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Ultracold atomic gases: T.~1012-10°eV
Liquid 3He: T.~107 eV
Metals and alloys: T.~ 103-102eV
Atomic nuclei and neutron stars: T. =~ 10> - 10° eV

Color superconductivity (quarks) : T. ~ 10’-10%eV
(1eV~ 10%K)

Superfluidity and superconductivity

* Requirement: Bose-Einstein (BEC) * Requirement: arbitrary weak attraction
condensation of interacting bosons. between fermions.
* Result: linear dispersion relation * Result: formation of Cooper pairs
* Consequence: no viscosity (below * Consequence: no resistance
certain flow velocity) * Theoretical description:
* Theoretical description: Field of Cooper pairs
,condensate wave fun_ct[on” A(F) _ ‘A ( F)‘ ei¢(f)
W(r) =¥ ()"

Both phenomena are actually like two sides of the same coin!




GOAL:

Unified description of superfluid dynamics of fermionic
systems far from equilibrium based on microscopic
theoretical framework.

Microscopic framework = explicit treatment of fermionic
degrees of freedom.

The fundamental equation describing dynamics is known:

However, if we would like to apply this equation to e.g.nuclear fission, even
if we knew nuclear Hamiltonian precisely, the problem of motion of more
than 200 strongly interacting nucleons, described in terms of true
many-body wave function is computationally intractable.



.In general the many-electron wave function for a system of N electrons
is not a legitimate scientific concept when N>N,, where Nyz103."
J.H. Van Vleck, Phys. Rev. 49, 232 (1936)

The wave function of 240Pu depends on 720 coordinates!
In a lattice of size: 10fm x 10fm x 10fm with lattice constant
1fm, one needs to store approximately 27176 numbers (without spin).

On the other hand, in most cases we need to extract one-body
observables, only.
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Hohenberg-Kohn Theorem

HOHENBERG P. and Ko~ W., Phys. Rev., 136 (1964) B864.

Hamiltonian describing the system of N interacting fermions:

h?

IfI _ T rext f/‘rint _ dB A " 2 ext AJ
+ Vet 4 J;¢f r%(fr){ SV V()| do(r)

1 ~ - int N 7
+ 5 > / d3r f dr' Pl ()L () Vg (r, 1) Yo (7)) Yo (1)
o,0'=T,}

The goal:

el

H@’({Tlrl,GQ’PQ, C"NTN) = EQS(N)‘I’({T]_T]_,{TQTQ, C"NTN)

Ground state wave function generates the one-body density:

po(T) = N, Z deTg...dBTNllD(JT:HQTQ: ...,aNrN)|2,

02,...,0 Nn=L.,T
/d?"rpg(r) = N,.

p(r) = py(r) + py (r)



Hence we have two mappings: A and B
Vert 25 [U[Vert]) 25 pld]

Hohenberg-Kohn theorem: mappings A and B are invertible!

Proof:
1) Mapping A

Let us consider: V2%t £ V£t 4 const
Then

ﬁllpl(ﬂ'l‘i‘l,ﬂ'g‘i‘g, ---:'—'TNTN) = (T—F I}lﬁxt + T?i'r"t)'l'l(glrl,agrg, ...7{J'NT‘N) =
= E14s¥i(o171, 0272, ...,0NTN)
ﬁgqjg(ﬂ'l?‘l,ﬂ'g‘rg, ...7{J'N‘rhr) = (T—F I};It + T?i'rl't)llfz(glrl,azrg, '“:‘-'INTN) =

= FEoysVo(o171,0272,...,0NTN)

Now, suppose that: |\1/1> = ’\I’2>
Then, substracting these equations we get:

(Ve — Ve Uy (0171, 0970, ..., oNTN) = (Bigs — Eogs)V1i(0171, 0979, ..., ONTN)
But: N

(Vt'm Vﬂt 'Ifl(olrl,agrg,...,gwrm) = Z(Ve.nt( ) Vezt( 1-'.))'1’1(6"1?‘1,0’2?‘2,...,O‘NTN),
i=1



R
Therefore: > (Ve” — Vst (r )) = E145 — Eags,

i=1
However, it contradicts the initial assumption: V%! # V£t + const
Therefore mapping A is invertible. R A R B
| et \\IF[V*‘H]) — p[¥]
2) Mapping B

Notethat:  Eigs = (U1 |Hy|¥1) < (Vo] Hi|Us), (1
Eags = (Us|Hy|Ws) < (U1 |Hy| W), ()

And evaluating:

(Wol Hy[Wa) = (W (T + Vi + VM) | Wy) = (Uy|(T + V5=t VIt — Vg™t 4 V) W) =
= (Ua|(Hy — V5™ + Vi) W) = (‘szlﬁﬂ‘l‘ )+ (U (Vi = V5) W) =
= Eggs Z /d?'}”l dqu Z e.;r_zt e.z:t(ri)) “1’2(0'1?‘1,0'27‘2, ...,D'NTN)‘Q =

Lon=l,T

— Bage + / Pr 3 (V) = Vi (1) pao (7).

o=t}
which implies that from the eq.(l) we get:| E145 < Eogs + /d‘qr(Vf”(r) — V;xt(r)pg(r)




But analogously from eq. (Il) one gets;] Ea4s < E14s + /f’iB?"(ng'(‘?’) - Vfﬂ(’f‘)ﬂl(?’)

Now, suppose that: pq (T) — PQ(’T')

Then substracting these two egs. leads to contradiction:

Elgs — EQQS < Eng - Elys:«

Therefore mapping B is invertible.

Concluding: two mappings A and B are invertible!

Vert ey W[V )ems p[U]

As a consequence we may treat the following expression as a functional of the density:

(U[pl|H|¥[p]) = Elp]




Hence, there are three conclusions one can draw from the above considerations:

e The ground state and the expectation value of any operator can be expressed
through the density p: (¥[p]|A|¥[p]) = A[p]

e Since both mappings A and B are invertible therefore p,; <= Vert and for a fixed
Vert the energy is a functional Ey ezt [p], which reaches minimum for p = ps:

§Eyest
op(r)

Cleaﬂy EVe.rt [p] > EV&It [pgs] if p % ,Og.s+

:Ozﬁ:p:pgs

e The invertibility of the mapping B : ¥ — p does not depend on Vert  which
means that there exist a universal functional F'[p|:

Flpl = Bveetlpl = [ d*rv=!(r)p(r) =
= (Y[p]|(T + V)| ¥ [p])
The universality means, that the functional F' is characteristic for the particular

system (depending on the mutual interaction between fermions, their mass, and
the kinetic term).



1. Can we construct explicitly the form of functional F[p| ?

2. Can we solve equations originating from the condition:

{SE ext {SF
ARSI

Sy = apm) )7

Kohn-Sham procedure: construct fictitious system of noninteracting fermions producing
the same density:

KouN W. and SHAM L. J., Phys. Rev., 140 (1965) A1133.

po(r) = Z \Gf’f.(”’)‘za
=1

EYc=t[po] = (¥[pol[(T + Vo )1®[po]).

The minimization of the functional describing a noninteracting system leads to:

0
OBy, |p] _ 8Tp]
0p 0p
And should lead to the same density as the minimization of the original functional:

0Lveatlp] _ 0T[p] | ea oVl




Comparing these two conditions one gets the expression for the external potential V,,
for noninteracting system, generating the same density:

Vo]
op(r)

5VCOT'T' [p]

Vo (r)=Ve(r)+ o

Vea:t _I_ Z /d3rlvznt r. T )p(?“’)—l-

o'=T{

Kohn-Sham scheme:

h2
( — V24V, (7’)) ¢ir) = €;¢;r),

2m

5Vc:0r?" [p]
op(r)

71

Hartree term Exchange-correlation term




How to construct energy density functionals?

. Postulate simple functional forms capturing the relevant physics with a number of
parameters (the smaller is the better).

. Use the ab-initio results to fix these parameters.
. Validate the functional with different ab initio and experimental results.

. Make interesting and verifiable physical predictions.



Superfluidity in Fermi systems

Presence of off-diagonal long range order (ODLRO):

|71 —7r2|—00

lim (] (r1) 9] (r1) ) (r2) Wbt (r2)) # 0

YANG C. N., Rev. Mod. Phys., 34 (1962) 694.

Cannot be reproduced in noninteracting Fermi system.
For example in the uniform Fermi gas:

g2(1) = @1 (r + 7)) (r1 +7) Py (1) Op (1)) =

(L (ry + 7))y (P))] (1 + 7)) 2y (1

)

ot 2A

2
d’*k or ) 1 kr :
g2(r) = ( ‘*’“"‘) = ( q) 27r/ dek/ dcosBe=ikreos® | —
;b.::kp (27): 0 1
[

_ (1 )
-\ (2m)?
/1 \?

.r -:.r\l 2

2
1 [ —kpcos(kpr) sin(kpr)\” k3 gy (kpr)
= _ e —|— —
82 ) r2

87‘1’2 kFT‘

b i ke k 2 1 ?
2 —ikr Jikr _
(2“/0 ko (e e )) _((%)3) (

m

r

)2.

( k} j1(kF'T‘)

lim go(r) = lim R

r—oo r—oo

) =0

2
kr
/ dkk sin(k:-r)) =
0




One needs to introduce another density!

Let us introduce anomalous density:

xti(r,r') = (W (r') Py (7))

And therefore:

lim (L (1) O] (r1) @y (r2) ¥4 (r2)) = X3, (r1) X1y (72)

|7y —ra| =00

Therefore now, besides the potential, which couples to the normal density:

Eemt Z /d3 Vemt pa( )

o=1)

we introduce the external potential which couples to the anomalous density:

EL.:E!;[X
D3 f 4 f P (AL (11 X (1 7) 4+ AL (1,7 )X g0 (7,7))

r:rr:r—N



Similarly, like in the original HK theorem, one can show the existence of one-to-
one correspondence between densities p and y and the potentials V¢**(r) — u, and
AZC (r,7") . Thus the ground state densities can be obtained through the minimiza-
tions of the functional Eyest pext

5E(Vemt—'b’4),Aemt O
op -

6E(Vemt_'u),Aemt 0
% -

which determine p, and xgs.

Consequently, there exist a universal density functional depending on normal and anomalous
Densities:

F[,Oj X] = E{VEIt—pL&EEf — EEIt[ﬂ] _ EEIt[X] _
= (U[p, XI(T + V") ¥[p, x])

OLvEIRA L. N., Gross E. K. U. and KouN W., Phys. Rev. Lett., 60 (1988) 2430.



Kohn-Sham scheme for Fermi superfluids

Fictitious noninteracting system:

- ~ ﬁ»g ~
Hy= ) f dripf(r) {—ﬁvu%g (1) = pto | Yo (T) +
o=T,l

4 Z /dgr/dar’ (&UUJ; (r, 7L (r) DL, (7)) + Dgygi () (r) 0T, (”'!))

o,0'=1]

Original interacting system in external potentials:

-~ ~ ~ Ead ~ - Eal hg o
_ ext ext int __ 3 ) . 2 ext . .
H=T+V" 4+ A“" 4+ V" = _2T¢/d rl(r) [ QmV + V5 (r) ,u,_.,] Ve (r) +

+ Y f dr / d>r’ (Af,iﬁ(r,r’)@ﬁi (r) L, (7)) + A (r, e )il (r) 9L, (r’))

o,0'=T|

+% > / &3 f dr'pl (r) L, () Vi (e g () o (),

o,0'=1,1



Minimization of the energy of noninteracting system, leads to:

Z /d3r"7-l (r,7") (un’{?!(r!)) =F (u”"’(?‘)) :
o'=1| Un,o (1) Un,o(T))
b hoo! (P, 7)) Aggor(r,77)
ooty —hE_(r,7"))’

Oo,0

where:

h2
hoo (1. 7') = 8(r — )05 (—Q—VQ + Voo (r) - /M>
m
And the requirement to generate the same densities as for interacting system implies:

§Vca-r-r [,0-. )d
t.l?t 3 int )
Vo (r)=V —l—Z/d 'V (e ) p(r') + 5 ,

d/Acorr [Jﬂ? X]
0X

AUG‘J" (T‘, TI) — Qg_:;t,(r? Tf) + Vcrif;i’(ra TI)XG,G’(T:' ‘I‘f) +

With densities defined as: po(T) = Z [Vn,0 ()],

Xo.o' (?‘, T’) — Z ’U,:;‘J (T)un,a‘(rf):

T




B = ) Bogoliubov transformation (unitary)
= ogoliubov transformation (unitar

iom T [ (i) 10

o=Tl

Hy = E EH&L&H + const.,

T

Note that the particle number is now not conserved: [N, Ho] 7é 0

N = Do ¢¢fd37"¢ lba( ).

Local superfluid density approximation

Ay or(r,r) =Dy _o(r,7")o(r — 7).

Kohn, W., Gross, E.K.U., Oliveira, L.N. (1989): J. de Physique (Paris) 50, 2601
S. Kurth, M. Marques, M. Liiders, E.K.U. Gross, Phys. Rev. Lett. 83 2628 (1999).



Integro-differential equations become differential equations!

Un (7 ; HnTET)
Un, 1 (7) | _ Unp, ()
H Un,+(T) = bnT( r) |
Un, (1) Up, 1 (T)
hap(r) =y gy (7) 0 A(r)
2 hyp(r)  hyy(r) — —A(r) 0
0 —A*(r)  =hi(r) + py hty(r)
A*(r) 0 hyt(r) —hj, (r) +py

Problem: anomalous density diverges.

h2)2 \
1 - .
Ugs (1) = | 5 (1 + 2m — H ekr

2\ - v jap)

E.g. for the uniform system:
e\

1
'Uka-('r') _ i I - 2m e?,k-r
\ 2 ( VB — )+ 1aR)
]' *
il #) = e f kv () iy () =

A —ik-(r—r')
Bl [Ale _ )
h?kz A2 lim r.r') x
blﬂ -

2m

: / kdk
(ZWV r—r/| VEE )7 1 jap Needs to be regularized!




Time dependent Density Functional Theory

The theorem relating density to many-body wave functions in the nonstationary sit-
uation has been proven by Runge and Gross . It says that that the densities p(r)
and p’(r) evolving from some initial state |¥(¢ = 0)) under the influence of two external
potentials Ve (r, t) and V' ¢! (r,t) (sufficiently regular, i.e. expandable in Taylor series
around t = 0) will be different, unless V= (r t) =V ¢*(r,t) = f(t), where f is a function
of time, only. Therefore, under this assumption there is one-to-one mapping between the
density p(r,t) and the potential V¢**(r, ). The important component of the proof is the
continuity relation 22 ( D4v. j(r,t) = 0 which has to be fulfilled.

RUNGE E. and Gross E. K. U., Phys. Rev. Lett., 52 (1984) 997.

Time dependent Kohn-Sham scheme:

2
—V vV, - 0
o ’ : — ih—o.
( 2”1 + (r’t)) {bar’t) Eﬁ‘af_(birﬂt)a

N
p(r.t) = loi(r, 1),

i=1
(SVCDT‘T\ [p]

Vo (rt)=Vei(r,t)+ V7 (r,t) + -
p




Time dependent Kohn-Sham scheme for superfluids:

0.-J. Wacker, R. Kiimmel, E.K.U. Gross, Phys. Rev. Lett. 73, 2915 (1994).

Z (fz,mf(r,t)ugf(r,t) +/dgr"ﬁgwr(r,r’,t)fr,rngr(r,t)) — ihgug(r,t),

t
o'=1 J

> (—?L;Jf(r,t)vg;(r, t) + f B/ AL (P, e (7, t)) — ih%vg(r, t)

o=t
Densities: po(T,t) = Z [vn.o (r, )],
T
Xo,or (T, 7' 1) = Z Uy o (T, t)tn,o (1, 1),
Potentials: =
, ; Ve p, x, t]
b _ ext 3 _ryrint / ! 7oA
? - ! bl o 3 )
Voo (r,t) =V5r(r t)+Zfd P VI (1,1 por (77, 8) +
a’ 1 510
\ 6&601"?‘ t
AIUO’OJ(T'J ‘r'f’ t) - A:;'ﬁg‘t’ (T‘ﬁ TJ? t) + Vc:r;t-' (‘r} TI)XU,J;(T‘} r’: t) + (S[,O’ X’ ]
' X

The main difference between static and time-dependent functionals is that the latter contains

memory term i. e. dependence on the past denSities, J.F. Dobson, M.J. Brunner, E.K.U. Gross, Phys. Rev. Lett. 79 1905 (1997).
G. Vignale, C. A. Ullrich, S. Conti, Phys. Rev. Lett. 79 4878 (1997).



Adiabatic approximation (no memory effects)

ﬁn,']“('r: t) ﬂn,T(T: t}
ﬂ”ﬁL(T’ t) . g ﬂnﬁL(‘T‘g [
H(t) Opr(rt) | Iﬁ‘at Opr(r,t) |’
’E'vn \L(Tﬂ t) ?n ‘L(Tgt)
h’TT(T?t) }LT¢(T,t) ~ 0 An(?‘}t)
H(t) fl-¢¢(?",t) }L¢¢(T,t) —Ag(?‘,f) 0
0 —Aj(r) —hi(r,t) —hi (rt) |’
Aj(r) 0 —his(r,t) —h] (r.?)

Adiabatic approximation, although simplifies the equations, affects dissipative effects.

C. A. Ullrich, Time-dependent density-functional theory: concepts and applications,
Oxford University Press, (2012).

Note that the expectation value of the particle number is conserved, if there is no external
pairing potential:

dN B 8 3 2 __ .
3D fd, rlons (r, D)2 = ZTr(p)

dN ,
= 2Im (Tr(A“*)) /h



Summarizing: Time Dependent DFT Basics
T

/_\
Uext(r1t) I:>.|:> n(F,t)

Runge-Gross mapping(1984):

@) =Rl @), |vo)=lv()  T+v-i=0

n(r) < e“O¥[n](F,F,,..., )

TDDFT variational principle also exists but it is more tricky:

b
. 0 A
— - E.R ,E.EKUG , PRL 52, 997 (1984)
Flvenl= [l in 5 F it S isies e,
t

G. Vignale, PRA77, 062511 (2008)




Pairing correlations in DFT
One may extend DFT to superfluid systems by defining the pairing field:

;4 O‘E (p X) L. N. Oliveira, E. K. U. Gross, and W. Kohn, Phys. Rev. Lett. 60 2430 (1988).
& (I'O'. I' 0 ) — — : ; . 0.-J. Wacker, R. Kiimmel, E.K.U. Gross, Phys. Rev. Lett. 73, 2915 (1994).
: E S
fj X (rgg o ) Triggered by discovery of high-Tc superconductors

Pt -

and introducing anomalous density X (ro.r'o’) = (g (v )1)g (1))

However in the limit of the local field these quantities diverge unless one renormalizes
the coupling constant:

A(I‘) — geff(r)Xc(r)
1 _ 1 mke(r) (1 ~ kp(r) n ke(r) + kp (r))
geff(r) g(I‘) 2m2h? 2,.{:0(1') kc(r) — kp (I‘)

which ensures that the term involving the kinetic and the pairing energy density is finite:

=0 _A0x0). 0=V 0.0,

2m
A. Bulgac, Y. Yu, Phys. Rev. Lett. 88 (2002) 042504
A. Bulgac, Phys. Rev. C65 (2002) 051305

It allows to reduce the size of the problem for static calculations by introducing the energy cutoff




Pairing correlations in time-dependent superfluid local density approximation (TDSLDA)

S = j 0(t>‘i%‘0(t) E[p(t), 2(0)] kit

Stationarity requirement produces the set of equations:

g (e )= (&% A% (Bed)
V
U

"(t) exp; vy - () A
“(1) ) = expliC(1) G(t) _( Af(t)  —h*(t) )

Orthogonality and completeness has to be fulfilled: |Bf(t)B(t) = B(t)B(t) =

In order to fulfill the completeness relation of Bogoliubov transform all states need to be
evolved!

Otherwise Pauli principle is violated, i.e. the evolved densities do not describe a fermionic
system (spurious bosonic effects are introduced).

Consequence: the computational cost increases considerably.

P. Magierski, Nuclear Reactions and Superfluid Time Dependent Density Functional Theory, Frontiers in Nuclear and
Particle Physics vol. 2, 57 (2019)

A. Bulgac, Time-Dependent Density Functional Theory and Real-Time Dynamics of Fermi Superfluids, Ann. Rev. Nucl. Part.
Sci. 63, 97 (2013)



Solving time-dependent problem for superfluids...

The real-time dynamics is given by equations, which are formally equivalent to the Time-Dependent HFB (TDHFB)

or Time-Dependent Bogolubov-de Gennes (TDBdG) equations

h~ filn,v,.. )V + fo(n,v,...) -V + faz(n,v,...)

e
(Una(r 1)) (ha(r,1) 0
0 |w, i(r.t) 0 hy(r, 1)
0_f Vna(rst) 0 =AN(r7)
Wnp(r,t)) \A*(r,t) 0

in

where h and A depends on “densities’

Mo, 0) = Y gm0, 7o) = ) Vim0l

E.<E, E,<E,

Z.(r,t)= Z un,T(T,I)v;:,l(r,t), Jo(r, 1) = Z Im[v}, (7, Ve (r, )], ger(r) g(r)

E,<E. E,<E,.

huge number of nonlinear coupled 3D
Partial Differential Equations
(in practice n=1,2,..., 10° - 10°)

* P. Magierski, Nuclear Reactions and Superfluid Time Dependent Density
Functional Theory, Frontiers in Nuclear and Particle Physics, vol. 2, 57
(2019)

* A. Bulgac, Time-Dependent Density Functional Theory and Real-Time
Dynamics of Fermi Superfluids, Ann. Rev. Nucl. Part. Sci. 63, 97 (2013)

« A. Bulgac, M.M. Forbes, P. Magierski,

Lecture Notes in Physics, Vol. 836, Chap. 9, p.305-373 (2012)

0 Ar,t) \(una(r,t))
—A(r, 1) 0 Uy p(r,t)
=R (1) 0 \’4'}:2}'(" W)

0 =lyr,n))ig(r, 1)

We explicitly track
fermionic degrees

of freedom!
A(r) = gers(r)xe(r)
1 _ 1 mke(r) ( _ kr(r) In kc(r)+k-p(r))
272R? 2keo(r)  Fo(r) — kp(r)

A. Bulgac, Y. Yu, Phys. Rev. Lett. 88 (2002) 042504

Present computing capabilities:
P full 3D (unconstrained) superfluid dynamics
P spatial mesh up to 100°
P max. number of particles of the order of 10*
P up to 10° time steps

(for cold atomic systems - time scale: a few ms

for nuclei - time scale: 100 zs)
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Nuclear Skyrme functional

E = /dBT‘H(I‘)

where
H(r) = CPp* +C°5-54+ CpVp+C5.V254+CT(pr —j-j) +
+ CTET-3)+CV (pV - T+5- (Vx )+ CVV -3+ — Ay*

where

Ji = > emdu
k)l

*o= )
kel

o density: p(r) = p(r, )|, =

e spin density: §(r) = s(r, '), =

e current: j(r) = Ql(\:/" — V) p(r. x|y

e spin current (2nd rank tensor): J(r) = %(ﬁ — V)@ 3(r. 1)y
e kinetic energy density: 7(r) = V- V/p(r,v/)|,—

e spin kinetic energy density: T(r) = V - V/3(r. 1/)|r—p

e anomalous (pairing) density: x(r) = x(r,r")|,—



Motion in Scission
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Estimation of characteristic time scales
for low energy fission ( <10MeV ):

1 000 000 zs
10-100 zs
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Acceleration of fission fragments
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1 000 zs
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Independent
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Secondary fission
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roducts

From LLNL-PRES-758023

Potential energy versus deformation

saddle point Energies Shapes
B ! Q & 189 MeV
I AV Sn=6.5MeV ground state
Eg = 5.6 MeV
scission
AV = 17 MeV @
at saddle
235
Ulnen,f) @D
at scission

- o d
Deformation

From F. Gonnenwein FIESTA2014



Typical framework for the theoretical description of nuclear dynamics
(of medium or heavy nuclei) at low energies

Reversible energy flow

Limited set ' '

of collective
coordinates

Other degrees
of freedom

Irreversible energy flow

Reversible energy flow is determined by: mass parameters, potential energy surface.

Irreversible energy flow is determined by friction coefficients and leads to collective
energy dissipation.

Consequently, questions associated with nuclear dynamics are directly related to
the treatment of various components of this framework:

- Determination of the set of collective variables and their eq. of motion

- Treatment of other degrees of freedom

- Assumptions concerning energy flows



Physics of nuclear superfluid dynamics

uasiparticle energy: )
Q P gy Potential energy surface

A Single-particle levels 5 5 4
Ep = (6—p) +‘A‘
N .
N\ 2
™ 7
- -
B -
\\ o
2A | <7
/<\ 0’0
// \\ 7y
s >
< ~
7 N
// N
” -
> >

Deformation

As a consequence of pairing correlations
large amplitude nuclear motion becomes
more adiabatic.

= 7
77

S
!

sp

While a nucleus elongates its Fermi surface
becomes oblate and its sphericity must be restored
Hill and Wheeler, PRC, 89, 1102 (1953)
Bertsch, PLB, 95, 157 (1980)

vi&)

From Barranco, Bertsch, Broglia, and Vigezzi 3
Nucl. Phys. A512, 253 (1990)



Advantages of TDDFT for nuclear reactions

The same framework describes various limits: eg. linear and highly nonlinear
regimes, adiabatic and nonadiabatic (dynamics far from equilibrium).

Interaction with basically any external probe (weak or strong) easy to
implement.

TDDFT does not require introduction of hard-to-define collective degrees of
freedom and there are no ambiguities arising from defining potential energy
surfaces and inertias.

One-body dissipation, the window and wall dissipation mechanisms are
automatically incorporated into the theoretical framework.

All shapes are allowed and the nucleus chooses dynamically the path in the
shape space, the forces acting on nucleons are determined by the nucleon
distributions and velocities, and the nuclear system naturally and smoothly
evolves into separated fission fragments.

There is no need to introduce such unnatural quantum mechanical concepts as
“rupture” and there is no worry about how to define the scission configuration.




Nuclear fission dynamics within TDDFT

Potential energy versus deformation

saddle point Energies Shapes
N N .
Q~ 189 MeV \
Estimation of characteristic time scales Sn EBI .
AV Sn=6.5MeV ground state
for low energy fission ( <10MeV ): . s . - 5.6 Mev
E scission AV~ 17 MeV ( tgdd?
at sa e
Ground state to saddle - 1 000 000 zs =
Saddle to scission - 10-100zs g |, Q=<0
Acceleration of fission fragments Brd |sate .
to 90% of their final velocity - 10 zs
Neutron evaporation - 1 000 zs ) PR >
1 ZS = 10'21 S From F. Gonnenwein FIESTA2014
Total kinetic energy of the fragments
1
' ‘ N
E E, TKErpsipa TK E.s[\'.\'r err y, N,
(MeV) (MeV) (MeV) (%)
8.08 1.542 177.26 1.95 A0L825 G2.246
960 3.063 176.73 1.13 AL500 G1.536
10.10 3.560 176.56 1.43 41.G25 62,783
e e ey . 10.57 4.032 176.39 1.55 AiLiHE2 61256
Induced fission of **®Pu within TDSLDA»m_sx 4.043 176.39 1.70 40.146  61.388
10.58 4.047 176.39 0.72 4.3l3 G1.475
10.60 4.065 176.38 0.92 AL G2.611 Calculated TKEs
11.07 4.534 176.22 0.14 41.495 63,134 r‘epr‘oduce
11.56 5.024 176.05 0.51 40.565 OGLBYY o xperimental data
12.05 5.515 175.88 0.49 4412 G180 with accuracy < 2%
12.15 5.610 175.84 0.29 40355 G ]G5 Y
12.16 5.626 175.84 0.15 4l.38G B2 6

A. Bulgac, P.Magierski, K.J. Roche, and 1. Stetcu, Phys. Rev. Lett. 116, 122504 (2016)



Fission dynamics of ““Pu

Initial configuration of 24%Pu is prepared beyond the barrier at quadrupole deformation

Q=165b and excitation energy E=8.08 MeV.. Accelerations in quadrupole and octupole

moments along the fission path
0.1

Proton pairing gap (MeV)
—0.70

Neutron pairing gap (MeV)
— 0.90

0.68

M e dor012 : 4000 6000 8000
t [fm/c]

Proton density (fm#-3)

Neutron density (fm#-3)
— 0.0700

— 0.0900

0.0675 0.0525

—0.0350

— 0.0450

0.0225
=104
Max: 0.111

X:
Min: 6.52e-011

Time= 0.000000 fm/c

4000 6000 8000 10000
t [fm/c]

Note that despite the fact that nucleus is already beyond the saddle point the collective

motion on the time scale of 1000 fm/c and larger is characterized by the constant velocity
(see red dashed line for an average acceleration) till the very last moment before splitting.
On times scales, of the order of 300 fm/c and shorter, the collective motion is a subject to

random-like kicks indicating strong coupling to internal d.o.f

A. Bulgac, P. Magierski, K.J. Roche, and I. Stetcu, Phys. Rev. Lett. 116, 122504 (2016)



Nuclear induced fission dynamics:

It is important to realize that these results indicate that the motion
is not adiabatic, although it is slow.

Although the average collective velocity is constant till the very last
moment before scission, the system heats up as the energy flows
irreversibly from collective to intrinsic degrees of freedom.

This may create problems for approaches based on ATDHF(B) or
TDGCM as no irreversible energy transfer between collective and

Intrinsic is possible there.



TDSLDA trajectories on the collective potential surface originating
from various initial configurations

SeaLl

,_.‘.:.':__: “_%\\‘ ey L2
e
¢ A

150 200 250

50 100
Q2 [b]

A. Bulgac, et al. Phys. Rev. € 100, 034615 (2019)
The final scission configuration is relatively independent on the initial condition
(providing it starts at or beyond the saddle point).

One needs a kind of stochastic extension to account for fluctuations to be able
to reproduce fragment mass distribution.




Remarks on the fragment kinetic and excitation energy sharing within the TDDFT

scission

In the to-date approaches it is usually assumed that _ :
the excitation energy has 3 components ~~

From fragment

(Schmidt&Jurado:Phys.Rev.C83:061601,2011 Phys.Rev.C83:014607,2011): : N geformation

at scission

- deformation energy
- collective energy (energy stored in collective modes) o
- intrinsic energy (specified by the temperature) ey
It is also assumed that the intrinsic part of the energy is
sorted according to the total entropy maximization of two e P
nascent fragments (i.e. according to temperatures, Distance between centers (fm)

level densities) and the fission dynamics does not matter. Schmidt&Jurado:Phys.Rev.C83:061601,2011

In TDDFT such a decomposition can be
. 3 1 | performed as well.
Ax 105 The intrinsic energy in TDDFT will be partitioned
| 1 | dynamically (no sufficient time for equilibration).

Heavy fragment: A = 138+ 0

Fragment excitation energy E* (MeV)

Incident neutron energy E_ (MeV)



Short (selective) history:

vIn 1999 DeMarco and Jin created
a degenerate atomic Fermi gas.

vIn 2005 Zwierlein/Ketterle group observed
2uantum vortices which survived when passing
rom BEC to unitarity -
evidence for superfluidity!

system of fermionic °Li atoms

Feshbach resonance;
B=834G

BEC side:

Figure 2 | Vortices in a stron !- ermionic atoms on the

g magnetic field was ramped to 735G for imaging (s . .
BEC- and the BCS-side of the Feshbach resonance. At the given field, the magnetic fields were 740G (a), 766 G (b), 792G (c M W ZWlerI elmn et al B
cloud of lithium atoms was stirred for 300 ms (a) or 500 ms (b-h) followed 843G (f), 853G (g) and 863 G (h). The field of vie
by an equilibration time of 500 ms. After 2 ms of ballistic expansion, the 880 pm X 880 pm. Natu re, 435’ 1047 (2005)



BCS — BEC crossover

Interaction strength
Bose-Einstein condensate (BEC) Superconductor

(bound fermion pairs = bosons) (Cooper pairs)

No phase transition between BCS regimes and BEC regime!

Eagles (1969), Leggett (1980)

Bi2223(0D)

5l La214(uD) 3D
High-temperature
.0t superconductors TMTSF*
E; &

reformed .
Unbound fermion pairs Bose

La214(0OD)
BCS-type [ ]
superconductors Y123
A /kyT,~1.76 sxaod P

(Cold atomic gases|

107 10"
Alep
From Fischer et al., Rev. Mod. Phys. 79, 353 (2007)
P. Magierski, G. Wlaztowski, A. Bulgac, Phys. Rev. Lett. 107, 145304 (2011)

From Sa de Melo, Physics Today (2008)




Surprising features of unitary gas hydrodynamics

In unitary Fermi gas there is Isotropic gas expansion is
no other length scale besides mmm) an equilibrium process.
the average distance between Bulk viscosity vanishes!
particles.

Shear viscosity (77) :

Conjecture: for every liquid the relation holds: Q h
Kovtun, Son, Starinets, Phys.Rev.Lett. 94, 111601, (2005) S 47Z'k

Entropy density
Maxwell classical estimate: 77 ~ mean free path

No well defined

h
Perfect fluid < = — ;
erfect fluid strongly interacting quantum system = e

S 47zk

Candidates : unitary Fermi gas, quark-gluon plasma

2 _ (O 15—0 2) h h G.WIlaztowski, P.Magierski,J.E.Drut,

Theory prediction: > Phys. Rev. Lett. 109, 020406 (2012)
47Ky

B



Densities:  n,(r) = Z Voo (), To(r) = Z Vv (),

E,<E. E,<E,

V() = ) g (), o) = Y Iy, )V, ()],

E,<E. E,<E,.

Energy Density Functional for (spin-imbalanced) Unitary Fermi Gas:

h2
H =
l In order to restore Galilean
+D(”Ta ”l)' Invariance of the functional
+g(ny, HL)VTV

~

2 More details:
A. Bulgac, M.M. Forbes, P. Magierski,

2
+[1—-ar(p)] J—T +[1-a|(p)] J—l o, Donsiy Funetionals, | one caro
2n n

T Lecture Notes in Physics 836
ed. W. Zwerger, Springer (2011).
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GFMC - Chang and Bertsch, Phys. Rev. A 76, 021603(R) (2007)
FN-DMC - von Stecher, Greene and Blume,
PRL 99, 233201 (2007), PRA 76, 053613 (2007)

Normal State Superfluid State
(Na.Np) Ernpumc Exsipa  (error)  (Ng,Np) Epnpuc Exs1pa (error)

(3,1) 6.6+£0.01 6.687 1.3% (1,1) 2.002+0 2.302 15%
4,1) 8.93+0.01 8962 0.36% 2,2) 5.05140.009 5.405 7%

( (
(5,1) 121401 1222  0.97% (3,3) 8.639-0.03 8.939 3.5%
(52) 133+0.1 1354  1.8% (4,4) 12.5734+0.03 12.63 0.48%
(6,1) 1584£0.1 15.65 0.93% (5,5) 16.806 +0.04 16.19  3.7%
(7,2) 19.940.1  20.11  1.1% (6,6) 21.278 +0.05 21.13  0.69%
(7,3) 208+0.1 2123  2.1% (7,7) 25.9234+0.05 2531  2.4%
(7,4) 21.94£0.1 2242  2.4% (8,8) 30.876 +0.06 30.49  1.2%
(8,1)22.5+0.1 2253 0.14% (9,9) 35.9714+0.07 3487 3.1%
(9,1) 259401 2597 027% (10,10) 41.302+0.08 40.54 1.8%
(9,2) 26.6+0.1 2673  0.5% (11,11) 46.889+0.09 45 4%
(9,3) 272401 2755  1.3% (12,12) 52.624+02 5123 2.7%
(9,5)30+0.1 3077  2.6% (13,13) 58.545+0.18 56.25 3.9%
(10,1)29.4+£0.1 2941 0.034% (14,14) 64.388+0.31 62.52 2.9%
(10,2) 29.9+0.1 3005 0.52% (15,15) 70.927+0.3 6872 3.1%
(10,6) 35+0.1 3593  2.7% (1,0) 1.5+0.0 1.5 0%
(20,1) 73.78+0.01 73.83 0.061% (2,1) 4.281+0.004 4.417  3.2%
(20,4) 73.79+0.01 7401  0.3% (3,2) 7.61£0.01  7.602 0.1%
(20,10) 81.7+0.1 8257  1.1% (4,3) 11.3624+0.02 11.31 0.49%
(20,20) 109.74+0.1 113.8  3.7% (7,6) 24.787+0.09 24.04 3%
(35,4) 15440.1 1541 0.078% (11,10) 45.474+0.15 43.98  3.3%

(35,10) 158.2+0.1 158.6 0.27% (15,14) 69.126+0.31 62.55 9.5%
(35,20) 178.6+0.1 180.4 1%

Table 9.2 Comparison between the ASLDA density functional as described in this section and the
FN-DMC calculations for a harmonically trapped unitary gas at zero temperature. The
normal state energies are obtained by fixing A = 0 in the functional: In the FN-DMC calculations,
this is obtained by choosing a nodal ansatz without any pairing. In the case of small asymmetry,
the resulting “normal states” may be a somewhat artificial construct as there is no clear way of
preparing a physical system in this “normal state”” when the ground state is superfluid.

Figure from: A. Bulgac, M.M. Forbes, P. Magierski,
Lecture Notes in Physics, Vol. 836, Chap. 9, p.305-373 (2012)



Creation of vortices in Unitary Fermi Gas - TDDFT simulations

Stirring the atomic cloud with stirring velocity  Stirring the atomic cloud with stirring velocity
lower than the critical velocity exceeding the critical velocity

Time e=0 Tstep= 1
Potential (eF) Density (n, ) Density (n, )

1A] (eF) 1A| (eF)

Bulgac, Luo, Magierski, Roche, Yu, Science 332, 1288 (2011)



Ultracold atomic gases: two regimes for realization of the Josephson junction

Weak coupling (weak link) Strong coupling

100
Time (ms)

100 150
Time (ms)

Observation of AC Josephson effect Creation of a .heavy soliton” after
between two 6Li atomic clouds. merging two superfluid atomic clouds.

It need not to be accompanied by
creation of a topological excitation.

G. Valtolina et al., Science 350, 1505 (2015). T. Yefsah et al., Nature 499, 426 (2013).



Unstable pairing nodal structures: atomic cloud collisions

(a) (b) (c)
MIT experiment TDDFT results
Phys. Rev. Lett. 116, 045304 (2016) " Piz Daint

- ‘)
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. . . . o« e \\ /
Decay of solitonic excitation (pairing nodal 105

structure) generates a sequence of topological
excitations involving: "Phi“-soliton and vortex line.
G. Wiaztowski, K. Sekizawa, M. Marchwiany, P. Magierski, Phys. Rev. Lett. 120, 253002 (2018)



@New effects predicted for spin-polarized systems:

Impact on the solitonic cascade:
final product of the cascade depends on the spin imbalance in the system

(can be verified experimentally with present setups)

P=20%: Dark soliton =—> Vortex ring = Vortex line

P=40%: Dark soliton => Vortex ring @ Cascade is suppressed
P=50%: Dark soliton !Il" by the polarization

effects
dark soliton vortex ring vortex line
(b)
p(r)
e
0.52
r—ross

017

Stability of topological defect depends on its internal structure...

— For sufficiently large spin-imbalance dark solitons become stable
(no snake instability) (see also: Reichl & Mueller, PRA 95, 053637; Lombardi, et. al., PRA 96, 033609)

G. Wlaztowski, K. Sekizawa, M. Marchwiany, P. Magierski,
Phys. Rev. Lett. 120, 253002 (2018)



Unstable pairing nodal structures: nuclear collisions

Collisions of superfluid nuclei having different phases of the pairing fields

The main questions are:

-how a possible solitonic structure can be manifested in nuclear system?
-what observable effect it may have on heavy ion reaction:

kinetic energy distribution of fragments, capture cross section, etc.?

Clearly, we cannot control phases of the pairing field in nuclear experiments and
the possible signal need to be extracted after averaging over the phase difference




Estimates for the magnitude of the effect

At first one may think that the magnitude of the effect is determined by
the nuclear pairing energy which is of the order of MeV's in atomic nuclei
(according to the expression):

> g(ep) |A|2 , g(&p) - density of states

On the other hand the energy stored in the junction can be estimated from
Ginzburg-Landau (6-L) approach:

For typical values characteristic for two medium nuclei: Ej ~ 30MeV



Total kinetic energy of the fragments (TKE)

O O=
O
S

T | T T T
@) 2405, 2405,

660
head-on

TKE (MeV)
z
=

m x
]
y| E=1.09Vp,, A
620 = i
E=1.07 I-;Bass. O]

0 0.2 04 06

density [fm?| Ag ()
000 004 008 0.12 0.6 000 025 050 0.75 1.00 Average particle transfer between fragments.

Creation of the solitonic structure between colliding nuclei prevents energy
transfer to internal degrees of freedom and consequently enhances the kinetic

energy of outgoing fragments.
Surprisingly, the gauge angle dependence from the G-L approach is perfectly
well reproduced in the kinetic energies of outgoing fragments!




PZr+>Zr atenergy E =V

Bass
A(ﬂ Total density | Neutron pairing gap|
Prot |A”|
units: 1/fmis 7T Unifs: MeV
014 10
0.12 0.75
0.080 372- 0.50
0.040 4 0.25
0.0 0.0
Max: 0.16 Max: 2.3
Min: 6.4e-07

Min: 6.1e-09 %
7

< D
Time= 0fm/c

Modification of the capture cross section!
P. Magierski, K. Sekizawa, 6. Wlaztowski, Phys. Rev. Lett. 119 042501 (2017)
See also for light nuclei: Y. Hashimoto, 6. Scamps, Phys. Rev. €94, 014610 2016)




TABLE [: The minimum energies needed for capture in
P7r4+%°Zr and *°Zr+*°Zr for the case of Ag = 0 [Ethresn(0)]
and A¢ = 7 [Eypresn(7)]. The energy difference between the
two cases is shown in the last column. The average pairing

. — -
e - -

R [fm]

gap A; is defined by Eq. (4).

VANISHING
PAIRING

Dynamic nature of the effect:

Solid lines: static barrier between two nuclei (with
pairing included):
90Zr+90Zr - brown
96Zr+96Zr - black (0-phase diff.) and

blue (Pi-phase diff.)
Static barriers are practically insensitive to the
phase difference of pairing fields.

p-

Dashed lines: Actual threshold for capture
obtained in dynamic calculations.
Hence AE measures the additional energy which

has to be added to the system to merge nuclei.

Ay (MeV)|| Binresn(0) (MeV) | Einresh (1) (MeV)|AE,
07, |An = 0.00 184 184 0
A, = 0.09
An =198 179 185 6
A, = 0.32
%7r A, = 2.44 178 . . Dependence of the additional energy
R i x —
A, =033 on pairing gap in colliding nuclei
An =294 178 187 9
A, =0.34 B

P. Magierski, A. Makowski, M. Barton, K. Sekizawa, G. Wlaztowski, Phys. Rev. C 105, 064602, (2022)

G. Scamps, Phys. Rev. C 97, 044611 (2018): barrier fluctuations extracted from experimental data provide evidence that the

effect exists.



Anatomy of the vortex core

Bosonic vortex structure:
weakly interacting Bose gas at T=0 — Gross-Pitaevskii eq. (GPE)

1
[__vz F gY@ + Ve D) |0 = i (7)

2m

¢ =0 @ I § ¢ -7 Order parameter:
y (F) = n(re”

~¢& - healing length h
Vs =—V¢

~T

m
Kz(j)diVS :%

NV



Fermionic vortex structure:
Weakly interacting Fermi gas — Bogoliubov de Gennes (BdG) egs.

hT A un’T . un,’]‘
A* —hji Un.l " Un,|

____féff_’_..@ 1 Dg=r

..---------p(r) Form of the vortex-like solutions:

A(r)| 40 = i (p)e™ e
Uy (F) = Uy (p)e’ Vo2

>

r

CdGM (Andreev) states
C. Caroli, P. de Gennes, J. Matricon, Phys. Lett. 9, 307 (1964):

A, |?

€F

Minigap:

Epg ~ - energy scale for vortex core excitations.

Density of states: g(¢) ~ & K A

€F
A l?



Vortex core structure in Andreev approximation: Schematic section of the core

[Ale”
2
EQ, LZ)k r, |1— L, + arccos L, — arccos EQ,L,) =
€F B kpry kpry |A|

HY
*
E(0,L,) = E(0)L,, E < |Ay|

002 L &E v
E(0,L,) = A l ___F

_Z § =
Spectrum of in-gap states
EO,L;) 1 Anomalous branch (subgap states)
1
Works well in deep BCS limit: K0
kras

»

L,

M. Stone, Phys. Rev. B 54, 13222 (1996)
P.M. G. Wlaztowski, A. Makowski, K. Kobuszewski, Phys. Rev. A 106, 033322 (2022)



Quasiparticle mobility along the vortex line

E(0)

E(k,) =

C. Caroli, P. de Gennes, J. Matricon, Phys. Lett. 9, 307 (1964):

In Andreev approximation:
\/msina = msinﬁ
kp =+/2(er — E)

ky, = \/2(8}7 + E)
\/kg—kg—\]k,i—kz
\/kg—k§+\]k,§—k§

It gives the same dispersion relations as
above up to the second order.

Awl\" L,
& h

N

Velocity component
along the vortex line

v, =k,

Effective mass of
guasiparticle in the core
carrying ang. mom. Lz

1 2
Meff(Lz) ~ 3

Schematic picture of Andreev reflection of
particle-hole moving along the vortex line

A=0

A=|Ale™

BCS

- 1.00 - 1.00
£0.75 2075

o «®

20.50 1 EDOOGm—g £0.50

go02s . | 8025
0.00 0.00

P.M. G. Wlaztowski, A. Makowski, K. Kobuszewski,
Phys. Rev. A 106, 033322 (2022)

Note that large value of effective mass along the vortex line originate from the fact that
the occupations of hole and particle states below the gap are approximately equal.



Changes of the core structure induced by spin polarization

_ Minority spin
Unpolarized core Polarized core | pranch: E
E,L,) 1 Anomalous branch E©,L;) 1t
empty states Majority spin
_ branch: E_
Polarization
. ) A
Lz M —> s M LZ Lz
e T H
> —H occupied states
My — = A
. 2
Branche_s are split E.(0,L) = |AOO| L, Ay
proportionally +\Us bz )~ +
- K, (F h 2
to polarization Er MM
Certain fraction of majority spin particles rotate in the opposite direction!
1 K[
max N_S_FZL(L+1J7&,A#
2|A, " 6\ ¢




Two consequences of vortex core polarization:
1) Minigap vanishes.

2) Direction of the current in the core reverses.

1) Since the polarization correspond to relative shift of anomalous branches therefore

the quasiparticle spectrum of spin-up and spin-down components is asymmetric
for k, =0.

However the symmetry of the spectrum has to be restored in the limit of k, — o .
Since for a straight vortex one can decouple the degree of freedom along the vortex line:

77— [ hep(r) + sk? — A(r)
A*(r) ~h3p(r) — 3kZ + 4y

therefore E(K,) oc £k: when k, — o

As a result there must exist a sequence of values: K, = ik21, +K

- Z z21e
for which: E(ikZi) —0




Moreover the crossings occur between levels of particular projection of
angular momentum on the vortex line.

Namely, the crossing occurs in such a way that the particle state: VT of ang.
momentum m is converted into a hole U, of momentum —m+1
Hence the configuration changes by Am = |2m —1|

5- A(k)=0
Am =[2m—1|

P.M. G. Wlaztowski, A. Makowski, K. Kobuszewski,
Phys. Rev. A 106, 033322 (2022)



How can we measure the influence of core states in ultracold gases?

Dissipative processes involving vortex dynamics. nonequilibrium  (b)
{_M particles Me,

Silaev, Phys. Rev. Lett. 108, 045303 (2012)
Kopnin, Rep. Prog. Phys. 65, 1633 (2002)
Stone, Phys. Rev. B54, 13222 (1996)

Kopnin, Volovik, Phys. Rev. B57, 8526 (1998)

particle

Classical treatment of states in the core (Boltzmann eq.). ‘-L}
fermions in r

More applicable in deep BCS limit unreachable in ultracold atoms. vortex core
Vortex-antivortex scattering in 2D

b X (um)

T » «Further, our few-vortex experiments extending
40: ii across different superfluid regimes reveal non-

0 7 universal dissipative dynamics, suggesting that
fermionic quasiparticles localized inside the vortex
core contribute significantly fo dissipation, thereby

1 00¢¢ 0003

y (/)
o
I
|
o
y (um)

N 2 @ Q"i L X J 4
a0 f 1-°  opening the route to exploring new pathways for
- quantum turbulence decay, vortex by vortex."
W.J. Kwon et al. Nature 600, 64 (2021)

Exciting quasiparticles
in the vortex core
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Modelling neutron star interior

A NEUTRON STAR: SURFACE and INTERIOR

Spaghetti

Neutron star is a huge superfluid

Glitch: a sudden increase of :
the rotational frequency gll.rCh phenomenon
=a sudden speed
up of rotation.
| 1970 1975 . To date mor.‘e ~ g g ENVELOPE
0.8925 | - than 300 gll'l'ches OUTER CORE
0.8924 | L have been
2 ~ detected in more C— % L
*han 100 PU'SClr‘S i “ ’, » ==X 5 Polar cap

0.8922 - PN o | “\_ ! A Cone of open

| i % | . o ] _ magnetic

. field
e lines

~1| CRUST:

O Glitches in the Vela pulsar

Period (sec)
bt SR

0.8923 -

0.8921 lg>x"

Mgz

0.8920" = :

Time

V.B. Bhatia, A Textbook of Astronomy and Astrophysics
with Elements of Cosmology, Alpha Science, 2001.

Glitch phenomenon is commonly believed to be related to rearrangement of
vortices in the interior of neutron stars (Anderson,Itoh,Nature 256,25 (1975))

It would require however a correlated behavior of huge number of quantum
vortices and the mechanism of such collective rearrangement is still a mystery.

Large scale dynamical model of neutron star interior (in particular neutron star
crust), based on microscopic input from nuclear theory, is required.

In particular: vortex-impurity interaction, deformation modes of nuclear lattice,
effective masses of nuclear impurities and couplings between lattice vibrations and
neutron superfluid medium, need to be determined
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D. Pecak, N. Chamel, P.M., G. Wlaztowski, Phys. Rev. C104, 055801 (2021)
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oo (Ffm—3)  0.00036 0.0059 0.0112 0.0189 0.0231 0.0333 Properties of a vortex across the neutron star crust
k' (fm) 4.52 1.79 145 121 114 1.0l

£ (fm) 8.44 553 597 700 778 1028

Ry (fm)  15.0 105 105 120 135 165

As (MeV) 035 133 153 155 150 128

Toi (MeV)  0.20 076 087 0.88 085 0.73

er (MeV) 1.01 648 993 1409 1610 20.53

p (MeV) 0.80 421 580 730 791 9.9 Minigap values I

E, (MeV) 0.090 0308 0261 0199 _0.152 0009 4= gap

B.. (105G) 7.76 265 225 172 131 0.82

<—| Magnetic field needed to polarize the core

Vortex — impurity interaction (pinning force)

f(r) (MeV /fm?)

-0.057

-0.10

-0.15—

0F

D. Pecak, N. Chamel, P.M., G. Wlaztowski, Phys. Rev. C104, 055801 (2021)

time= 11 fm/c
F_m(19.1)= 2.08 MeV/fm
F_t (19.1)= 0.01 MeV/fm

o = 0.014 fin~?
Pn = 0.031 f11‘173 ------

-

12 14

16

r (fm)

G. Wlaztowski, K. Sekizawa, P. Magierski, A. Bulgac, M.M. Forbes,
Phys. Rev. Lett. 117, 232701(2016)

18 20

IS neutron star a turbulent system?

*  What are differences and similarities of turbulence and its decay in Fermi and Bose

superfluids?

A. Bulgac, A. Luo, P. Magierski, K.Roche, Y. Yu, Science 332, 1288 (2011).

M. Tylutki, G. Wlaztowski, Phys. Rev. A103, 051302 (2021).

K.Hossain, K.Kobuszewski, M.M.Forbes, P. Magierski, K.Sekizawa, G.Wlaztowski Phys. Rev. A 105, 013304 (2022).
G. Wlaztowski, M.M. Forbes, S.R. Sarkar, A. Marek, M. Szpindler, PNAS Nexus 3, 160 (2024).



Effective mass of a nucleus in superfluid neutron environment

Suppose we would like to evaluate an effective mass of a heavy particle immersed
ina Fermi bath.

Can one come up with the effective (classical) equation of motion of the type:

In general it is a complicated task as the first and the second term
may not be unambiguously separated.

However for the superfluid system it can be done as for sufficiently
slow motion (below the critical velocity) the second term may be
neglected due to the presence of the pairing gap.



Dynamics of nuclear impurity in the neutron star crust: effective mass and energy dissipation
a) b) c)
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FIG. 4. The effective mass of the nucleus calculated with dif-
ferent approaches: dynamic ]ij,flr), static Afifr), hydrodynamic
M’ég). The details, including how we determine the error bars
are explained in the main text. The hydrodynamic approx-

) " - imation gives qualitative behavi hile static calculations
D. Pecak, A.Zdanowicz, N. Chamel, P. Magierski, G. Wlaztowski, arXiv:2403.17499 tmation gives quaiitative behavior, while static calcwiations
match results in the low-density regime.



Pairing in spin imbalanced superfluids

Clogston-Chandrasekhar condition sets the limit for the chemical potential difference at
which superfluidity is lost:

‘ 1y — Ly ‘ oc A
d b ’!(‘-’ . . . .
splitting of quasiparticle
Teo i exc. energy branches for
[F\FYY : spin-up and spin-down
_ g J' ho. fermions.
| 1
I he=|u —
" 0 - L | - 2 |)Ll‘L ﬂ7\|
= £ B~k ——-—- N &k
=l —|A]2 p+ R —|AP

Sarma (interior gap) phase

G. Sarma, J. Phys. Chem. Solids 24 (1963) 1029.
W.V. Liu, F. Wilczek, Phys. Rev. Lett. 90 (2003) 047002.
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Phase separation in momentum space
Unstable for balanced masses at T=0 P P

K.B. Gubbels, H.T.C. Stoof / Physics Reports 525 (2013) 255-313



Inhomogeneous systems: Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phase
Larkin-Ovchinnikov (LO): A(r) ~ COS(q . F)

Fulde-Ferrell (FF): A(r) ~ eXp(ICf . F)

A.l. Larkin and Y. N. Ovchinnikov, Sov. Phys. JETP 20, 762 (1965)
P. Fulde and R. A. Ferrell, Phys. Rev. 135, A550 (1964)

Spatial modulation of the pairing field cost energy proportional to q2 but may be
compensated by an increased pairing energy due to the mutual shift of Fermi spheres:

FF: k., LO:

1.1
Bulgac & Forbes have shown, within DFT,
B 10 that Larkin-Ovchinnikov (LO) phase may
= exist in the unitary Fermi gas (UFG)
0.0 | (realized experimentally in ultracold atomic clouds)
L |
0.0 0.2 0.4 0.8 1.0
5/3 _
E ~[n,9(x)] T = /M LO configuration — supersolid state

A. Bulgac, M.M.Forbes, Phys. Rev. Lett. 101,215301 (2008)
See also review of mean-field theories : Radzihovsky,Sheehy, Rep.Prog. Phys.73,076501(2010)



Andreev states and stability of pairing nodal points

3 , Due to quasiparticle scattering the localized
_ = ~ Spin-down particle:‘vw(x)‘z Andreev states appear at the nodal point.
P \/ These states induce local spin-polarization
/ N
a — \1 _ BdG in the Andreev approx. (A < k? )
N . d
ST -2ik. —  A(X)
Spin-up hole: —|U 1 (X)‘2 " dx unT (X) _E um(x)
X Lod v (X v (X
A"(X) 2|de— () ()
l X_

Another perspective: superconductor-ferromagnet junction
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Induces spatial modulation of
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Creating Larkin-Ovchinnikov droplet (ferron) dynamically in unitary Fermi gas

Spin-selective potential applied locally Pairing field nodal structure
leads to Cooper pair breaking 1Al €

g

E=(p.-u V2

Spin-down hole
lu,, G

Nodal line Phase =0
Two crossing beams: A= 1¢r, 0= 3.14¢ Ferron structure
|Al/er 4 N Ag/n (c) W | N Ea .
- 980 i 2 -0.50 -038 -0.25 -0.12 00 0.0 0.12 0.25 0.38 0.50
p(r) A(r)/e,

beams are

nodal plane:
order parameter changes sign




TDDFT calcs.

— 0.05000

nodal plane:
order parameter changes sign

-0.08750

-0.2250

-0.3625

—-0.5000
Max: 0.01602
Min: -0.5063

—0.5194

0.3904

0.2613

0.1322

— 0.003102
Max: 0.5194
Min: 0.003102

Forming a stable spherical nodal surface in Unitary Fermi Gas (UFG) -

Polarization p(r)  Phase of Pairing [7T]

— 1.000

0.5000

0.0000

-0.5000

—-1.000
Max: 0.8933
Min: -0.1431

Phase difference
is 1T

Maximum polarization

@ > occurs within a shell
where the pairing field
vanishes.

Contraction of the nodal sphere is prevented by the pairing potential barrier.
Expansion of the nodal sphere will cost the energy due to expansion of polarized shell.

As a result of the interplay between volume and surface energies keeps the impurity stable

P. Magierski, B.Tizemen, G.Wlaztowski, Phys. Rev. A 100, 033613 (2019); Phys. Rev. A 104, 033304 (2021)



Non-central collision of two impurities

|Al/eF Ao/t

— 050 .

potential is

The velocities of impurites are about 30% of the velocity of sound.

0.025

Limiting velocity with respect to
superfluid background

Note that the Fulde-Ferrell limit defines

the critical velocity which is associated with

the maximum spin current that can flow through
the impurity (~( = IkFT — kFil)'

0.02

Velocity of the impurity [V/V ]
o

P.Magierski, B.Tizemen, G.Wlaztowski, Phys. Rev. A 104, 033304 (2021)

0.015 -

0.01 -

0.005 |

Moving impurity:

From Larkin-Ovchinnikov
towards
Fulde-Ferrell limit:

A(r):cos(q-r)=exp(ig-r)

Surprisingly, the nodal
structure remains stable
even during collisions

0.02 0.04 0.06 0.08 0.1 0.12
Dragging Velocity (VNF)

o



What is going to happen if we introduce spin imbalance?

In general it will generate distortions of Fermi spheres locally and triggering the appearance
of pairing field inhomogeneity leading to various patterns involving:

- Separate impuritites (ferrons),

- Liquid crystal-like structure,

........
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B. Tizemen, T. Zawislak, P.M., G. Wlaztowski, New J. Phys. 25, 033013 (2023).

Dynamics of a vortex dipole in spin imbalanced Fermi superfluid.
Strong enhancement of vortex dipole energy dissipation.

a) | o b) | o )

6.0-10"

0.5

W
— 04

‘ 4 i s
R 03 u 4.5-10
—.
0.2 —_—
0.1 3010° -+
0 10 20 30 40 50 60 & —.

Y [k i Idf 15:10°
d)

0.0-10°
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Open problems of TDDFT

1) There are easy and difficult observables in DFT.
In general: easy observables are one-body observables. They are
easily extracted and reliable.

2) But there are also important observables which are difficult to
extract.
For example:
- S matrix
momentum distributions
transitional densities (defined in linear response regime)
various conditional probabilities
mass distributions

Stochastic extensions of TDDFT are under investigation:

D. Lacroix, A. Ayik, Ph. Chomaz, Prog.Part.Nucl.Phys.52(2004)497

S.Ayik, Phys.Lett. B658 (2008) 174
A. Bulgac, S.Jin, I. Stetcu, arxiv:1806.00694

3 ) Dissipation: transition between one-body dissipation regime and two-
body dissipation regime.



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31: Solving time-dependent problem for superfluids...
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38: Nuclear fission dynamics within TDDFT
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77

