Uniform and nonuniform
dilute and strongly Interacting
Fermi gas

Bosons Fermions

LR i T

Piotr Magierski (Warsaw University of Technology)

In collaboration with: Aurel Bulgac, Joaquin E. Drut
(University of Washington, Seattle)




Outline

» BCS-BEC crossover. What is the unitary regime?

» Equation of state for the uniform Fermi gas in the unitary
regime. Critical temperature.

» Thermodynamics of the unitary Fermi gas.

» Measurements of the entropy and the critical temperature in
a harmonic trap.

» Local density approximation (LDA) for the unitary Fermi gas
in a trap.



> What is the unitary regime?

A gas of interacting fermions is in the unitary regime if the average
separation between particles 1s large compared to their size (range of
interaction), but small compared to their scattering length.
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n - particle density
a - scattering length
I, - effective range

System is dilute but
strongly interacting!

UNIVERSALITY: E(T) = 5(}) E-c

QUESTIONS: What is the shape of f(% )?
What is the critical temperafure for
the superfluid-to-normal transition?



lixpected phases offa two speciesi dilute Fermi system
BCS-BEC crossover

T

weak Interactions

Molecular BEE and

wWazl Intarsetion

. Atomic+Molecular
BES Supertluid Superfluids
>
1/a
Bose
— a>() molecule

no 2-body bound state shallow 2-body bound state



In dilute atomic systems experimenters can control nowadays

almost anything:

» The number of atoms in the trap: typically about 10°-10° atoms
divided 50-50 among the lowest two hyperfine states.

* The density of atoms

» Mixtures of various atoms

» The temperature of the atomic cloud

* The strength of this interaction is fully tunable!

Who does experiments?

e Jin’s group at Boulder

e Grimm’s group in Innsbruck
 Thomas’ group at Duke

» Ketterle’s group at MIT

e Salomon’s group in Paris

e Hulet’s group at Rice
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Neutron matter:

Effective range: 1,~ 2.8 im
Scattering length: a =-18.5 {fm

Density range
I, < n'”? = N\ /2 < |3

corresponds to

n ~0.001-0.01 fm?>
k .~ 0.3 - 0.7 fim’!




Hamiltonian
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Theoretical approach: Fermions on 3D lattice

Volume = L°
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L —limit for the spatial
correlations in the system

Periodic boundary conditions imposed




Hamiltonian
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A =T +V = [d'r cﬁjm[ " A]wsm - g [dr Ay, ()

N =[d’r (A(F)+Ay(M); A7) =" (P (7)

Interaction:
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Interaction:

f(k):_2ﬂ2%<IZTAIZ'> k20, L
h —ik+4ﬂ-h _2kcut
gm T
l ___m + kaUt _ Running coupling constant g defined by lattice
g 4zh’a 27°h’
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- UNITARY LIMIT

g - 27 h%AX
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Discrete Hubbard-Stratonovich transformation

o M=]]2, iro0M® [ 1+oOM 0] A=ep(m) ]

o112

o-fields fluctuate both i space and imaginary time

U(o) =ﬁ&<@;
W(@:e)qj[—z'(f—,LN)/2}Hl+o(f)AﬁT(F)][l+o(f)Aﬁ¢(f)]e)q)[—f('lc—,LN)/2}
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J‘DG(’F, T) = . ; N7=—
{o(F)=t1} {oc(72)=t1}  {o(F.N,)=t1} T
B :
One-body evolution
U = I —| dzlh — <
(o) = T, expi —([ o)) = ul} operator in imaginary time

Do(F, )Ty U({o}) Tr| HU{o}) ]

e e T Tr0({o})

TrU({c}) = {det[l + U.(0)]}’ = exp[-S({c})] >0 |No sign problem!

m(E9) = @5 = w,;@)L - gjgij})} Vi), vy ="

All traces can be expressed through these single-particle density matrices




More details of the calculations:

o Lattice sizes used from 83 x 257 (high Ts) to 83 x 1732 (low Ts), <N>=50,
and 63 x 257 (high Ts) to 63 x 1361 (low Ts), <N>=30).

 Effective use of FFT(W) makes all imaginary time propagators diagonal (either in
real space or momentum space) and there is no need to store large matrices.

» Update field configurations using the Metropolis importance sampling algorithm.
* Change randomly at a fraction of all space and time sites the signs the auxiliary
fields o(r,T) so as to maintain a running average of the acceptance rate between

0.4 and 0.6 .

* Thermalize for 50,000 — 100,000 MC steps or/and use as a start-up field
configuration a o(x,7)-field configuration from a different T

» At low temperatures use Singular Value Decomposition of the evolution operator
U({o}) to stabilize the numerics.

* Use 200,000-2,000,000 o(x,7)- field configurations for calculations

* MC correlation “time” = 150 — 200 time steps at T =T



5 = ==CO Superfluid to Normal Fermi Liquid Transition

I Normal Fermi Gas
- (with vertical offset, solid line)

Bogoliubov-Anderson phonons
and quasiparticle contribution

AT=0~042)] _gf (dashed line )
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Quasi-particle contribution only
(dotted line)
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A. Bulgac, J.E. Drut, P. Magierski,PRL96,090404(2006)
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Low temperature behaviour of a Fermi gas in the unitary regime
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Lattice results disfavor
either n=3 or n<2
and suggest n=2.5(0.25)

This is the same behavior as for a gas of
noninteracting (!) bosons below
the condensation temperature.
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and fitting to lattice results = m, =3m

* Why this value for the bosonic mass?

 Why these bosons behave like noninteracting particles?



Conclusions

v' Fully non-perturbative calculations for a spin 2 many fermion
system in the unitary regime at finite temperatures are feasible and
apparently the system undergoes a phase transition in the bulk at
T.=0.23 (2) e
(Exp: T, =0.27(2) &g , J. Kinast et al. Science, 307, 1296 (2005):
Based on theoretical assumptions).

v Chemical potential is constant up to the critical temperature — note
similarity with Bose systems!

v Below the transition temperature, both phonons and fermionic
quasiparticles contribute almost equaly to the specific heat. In more
than one way the system is at crossover between a Bose and Fermi
systems.

There are reasons fo believe that below the critical tfemperature this
system is a new type of fermionic superfluid, with unusual properties.



Quest for unitary point critical temperature
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Thermodynamics of the unitary Fermi gas

ENERGY: E(x):é.f(x)gFN; X
S Ep
S OE 3 3 ch()
C=T_—= NE(X) = S(x) == N [~ dy
or T 5 5 £

y
ENTROPY/PARTICLE: o(X) = S(X) 3j (

FREE ENERGY: F =E-TS = % P(X)eeN

P(X) = 5 (X) = Xo(X)
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Since: OV, T, 1) =—VP(T, 1)

at all temperatures the pressure calculated in the BCS/meanfield
approximation will give variational estimate from below of P(T, x)

Dashed lines correspond to
low temperature limit of b (?%25/26(0)5“&
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D.Lee, T.Schafer,
PRC73 015202

Mean-field approx.

4 =
A.Bulgac, J.E. Drut, P. Magierski,
cond-mat/0701786




Experiment

John Thomas’ group at Duke University,
L.Luo, et al. Phys. Rev. Lett. 98, 080402, (2007)

Dilute system of fermionic °Li atoms in a harmonic trap

» The number of atoms in the trap: N=1.3(0.2) x 10> atoms
divided 50-50 among the lowest two hyperfine states.

e Fermi energy: EF =nhCQ(3N) (a)xa)ya)z )

e /kg =~ 1uK
* Depth of the potential: U, = 105,20
» How they measure: energy, entropy and temperature?

2 A
PV =2E
3 >—> N <U> =§ - virial theorem
VP =—n(f)VU 1T

_ . Holds at unitarity and for
n(r) - local density noninteracting Fermi gas




For the weakly interacting gas (B=1200G =1/k-a=-0.75) the energy
and entropy is calculated. In this limit one can use Thomas-Fermi
approach to relate the energy to the given density distribution.

The entropy can be estimated as for the noninteracting system with

1% accuracy. | ice: 2
0 y. In practice <Z > — E, S
B=1200
*The magnetic field is changed adiabatically (S=const.) to the value

corresponding to the unitary limit: B = 840G = 1/kra =0
*Relative energy in the unitary limit is calculated from virial theorem:

E(Tl):<22>T
e (),
188

*Temperature is calculated from the identity: — = —
T O©E

*The plot S(E) contains a cusp related to the phase transition:

1
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E(T.)— E(0)~ 0.41(5)N&l°,
S./N = 2.7(2)kg,
T. ~0.293)
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Theory: local density approximation (LDA)

I 3
Uniform _
“svustem Q=F-AN ——5 A X)eeN—AN

Nonuniform - 3 N
system Q= [d’r| = & (N(X(F) +U ()~ 4 |n(7)

(gradient S .

corrections —

neglected) X(F) _
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N5 7
—; & (F)=——| 37°n(F)
g () 2m -
The overall chemical potential A and the temperature T are constant

throughout the system. The density profile will depend on the shape of
the trap as dictated by:

5Q  S5(F-AN)
sn(fF)  on(F)

Using as an input the Monte Carlo results for the uniform system and

experimental data (trapping potential, number of particles), we determine
the density profiles.

= pu(X(r)+U(r)-4=0



| Superfluid | .
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& (0) - Fermi energy at the center of the trap

The radial (along shortest axis) density profiles of the atomic cloud in
the Duke group experiment at various temperatures.
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&r (0) - Fermi energy
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Entropy as a function of energy (relative to the ground state) for the unitary
Fermi gas in the harmonic trap. Inset: log-log plot of energy as a function of

temperature.
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Ratio of the mean square cloud size at B=1200G to its value at unitarity
(B=840G) as a function of the energy. Experimental data are denoted
by point with error bars.

B=1200G =1/kca=—-0.75 B=840G=1/kca=0
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Summary

We presented the first model-independent comparison of recent
measurements of the entropy and the critical temperature, performed

by the Duke group: L.Luo, et al. Phys. Rev. Lett. 98, 080402, (2007),
with our recent finite temperature Monte Carlo calculations.

EXP. THEORY
E(T.)—E(0)~041(5)Ne&®, [ E(T.)-E(0)~0.34(2)Ne,
S. /N =2.7(2)kg, < S./N=2.403)kg,

T ~0.29(3)&X T, ~027Q3)&f

A.Bulgac, J.E. Drut, P. Magierski,
cond-mat/0701786

The results are consistent with the predicted value of the critical
temperature for the uniform unitary Fermi gas: 0.23(2)&¢
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